Harmonic Hopf Constructions between Spheres Ii

نویسندگان

  • WEIYUE DING
  • HUIJUN FAN
  • JIAYU LI
چکیده

This paper can be seen as the final remark of the previous paper written by the first author [D]. We consider the existence of harmonic maps between two spheres, via Hopf constructions. Given a non trivial bi-eigenmap f : S × S −→ S with bi-eigenvalue (λ, μ) (λ, μ > 0) and a continuous function α : [ 0, 2 ]−→ [ 0, π ] with α(0) = 0 , α(2 ) = π , one defines a map u: S p+q+1 −→ S , called the α-Hopf construction on f, by u(sin t · x, cos t · y) = (sinα(t)f(x, y), cosα(t)), where x ∈ S, y ∈ S and t ∈ [0, 2 ]. It is known [ER] that u is a harmonic map if and only if α is a solution of the o.d.e.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Morphisms on Conformally Flat 3-spheres

We show that under some non-degeneracy assumption the only submersive harmonic morphism on a conformally flat 3−sphere is the Hopf fibration. The proof involves an appropriate use the Chern-Simons functional.

متن کامل

A Note on Subgroups of the Modular Group1

8. M. Nakaoka and H. Toda, On Jacobi identity for Whitehead products, J. Inst. Polytech. Osaka City Univ. Ser. A. 5 (1954), 1-13. 9. J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294. 10. N. Shimada, Triviality of the mod p Hopf invariants, Proc. Japan Acad. 36 (1960), 68-69. 11. N. E. Steenrod, Cohomology invariants of mappings, Ann. of Math....

متن کامل

Hopf Maps, Lowest Landau Level, and Fuzzy Spheres

This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fuzzy two-spheres to higher dimensional fuzzy spheres. Higher dimensional fuzzy spheres have an int...

متن کامل

On the Classification of Quadratic Harmonic Morphisms between Euclidean Spaces

We give a classification of quadratic harmonic morphisms between Euclidean spaces (Theorem 2.4) after proving a Rank Lemma. We also find a correspondence between umbilical (Definition 2.7) quadratic harmonic morphisms and Clifford systems. In the case R −→ R, we determine all quadratic harmonic morphisms and show that, up to a constant factor, they are all bi-equivalent (Definition 3.2) to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994