Machine Learning Methods for High-Dimensional Imbalanced Biomedical Data
نویسندگان
چکیده
Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect the model performance. In this thesis, I focus on developing learning methods for the high-dimensional imbalanced biomedical data. In the first part, a sparse canonical correlation analysis (CCA) method is presented. The penalty terms is used to control the sparsity of the projection matrices of CCA. The sparse CCA method is then applied to find patterns among biomedical data sets and labels, or to find patterns among different data sources. In the second part, I discuss several learning problems for imbalanced biomedical data. Note that traditional learning systems are often biased when the biomedical data are imbalanced. Therefore, traditional evaluations such as accuracy may be inappropriate for such cases. I then discuss several alternative evaluation criteria to evaluate the learning performance. For imbalanced binary classification problems, I use the undersampling based classifiers ensemble (UEM) strategy to obtain accurate models for both classes of samples. A small sphere and large margin (SSLM) approach is also presented to detect rare abnormal samples from a large number of subjects. In addition, I apply multiple feature selection and clustering methods to deal with high-dimensional data and data with highly correlated features. Experiments on high-dimensional imbalanced biomedical data are presented which illustrate the effectiveness and efficiency of my methods.
منابع مشابه
Flexible high-dimensional classification machines and their asymptotic properties
Classification is an important topic in statistics and machine learning with great potential in many real applications. In this paper, we investigate two popular large-margin classification methods, Support Vector Machine (SVM) and Distance Weighted Discrimination (DWD), under two contexts: the high-dimensional, low-sample size data and the imbalanced data. A unified family of classification ma...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملResampling Imbalanced Class and the Effectiveness of Feature Selection Methods for Heart Failure Dataset
Clinical datasets commonly have an imbalanced class distribution and high dimensional variables. Imbalanced class means that one class is represented by a large number (majority) of samples more than another (minority) one in binary classification [1]. For example, in our research dataset there are 1459 instances classified as “Alive” while 485 are classified as “Dead”. Machine learning is gene...
متن کاملResampling Imbalanced Class and the Effectiveness of Feature Selection Methods for Heart Failure Dataset
Clinical datasets commonly have an imbalanced class distribution and high dimensional variables. Imbalanced class means that one class is represented by a large number (majority) of samples more than another (minority) one in binary classification [1]. For example, in our research dataset there are 1459 instances classified as “Alive” while 485 are classified as “Dead”. Machine learning is gene...
متن کاملClass imbalance and the curse of minority hubs
Most machine learning tasks involve learning from high-dimensional data, which is often quite difficult to handle. Hubness is an aspect of the curse of dimensionality that was shown to be highly detrimental to k-nearest neighbor methods in high-dimensional feature spaces. Hubs, very frequent nearest neighbors, emerge as centers of influence within the data and often act as semantic singularitie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013