Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes
نویسندگان
چکیده
Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.
منابع مشابه
Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes
Organic light emitting diodes (OLEDs) have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the ...
متن کاملThin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...
متن کاملRosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes
The large polymer particle residue generated during the transfer process of graphene grown by chemical vapour deposition is a critical issue that limits its use in large-area thin-film devices such as organic light-emitting diodes. The available lighting areas of the graphene-based organic light-emitting diodes reported so far are usually <1 cm2. Here we report a transfer method using rosin as ...
متن کاملSolution-processed transparent blue organic light-emitting diodes with graphene as the top cathode
Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been la...
متن کاملOn the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer
Related Articles Multilayered graphene anode for blue phosphorescent organic light emitting diodes Appl. Phys. Lett. 100, 133304 (2012) Multilayered graphene anode for blue phosphorescent organic light emitting diodes APL: Org. Electron. Photonics 5, 82 (2012) Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser Appl. Phys. Lett. 100, 13111...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016