A DNA Damage Response System Associated with the phosphoCTD of Elongating RNA Polymerase II
نویسندگان
چکیده
RNA polymerase II translocates across much of the genome and since it can be blocked by many kinds of DNA lesions, detects DNA damage proficiently; it thereby contributes to DNA repair and to normal levels of DNA damage resistance. However, the components and mechanisms that respond to polymerase blockage are largely unknown, except in the case of UV-induced damage that is corrected by nucleotide excision repair. Because elongating RNAPII carries with it numerous proteins that bind to its hyperphosphorylated CTD, we tested for effects of interfering with this binding. We find that expressing a decoy CTD-carrying protein in the nucleus, but not in the cytoplasm, leads to reduced DNA damage resistance. Likewise, inducing aberrant phosphorylation of the CTD, by deleting CTK1, reduces damage resistance and also alters rates of homologous recombination-mediated repair. In line with these results, extant data sets reveal a remarkable, highly significant overlap between phosphoCTD-associating protein genes and DNA damage-resistance genes. For one well-known phosphoCTD-associating protein, the histone methyltransferase Set2, we demonstrate a role in DNA damage resistance, and we show that this role requires the phosphoCTD binding ability of Set2; surprisingly, Set2's role in damage resistance does not depend on its catalytic activity. To explain all of these observations, we posit the existence of a CTD-Associated DNA damage Response (CAR) system, organized around the phosphoCTD of elongating RNAPII and comprising a subset of phosphoCTD-associating proteins.
منابع مشابه
BRCA1/BARD1 inhibition of mRNA 3' processing involves targeted degradation of RNA polymerase II.
Mammalian cells exhibit a complex response to DNA damage. The tumor suppressor BRCA1 and associated protein BARD1 are thought to play an important role in this response, and our previous work demonstrated that this includes transient inhibition of the pre-mRNA 3' processing machinery. Here we provide evidence that this inhibition involves proteasomal degradation of a component necessary for pro...
متن کاملThe Menin Tumor Suppressor Protein Is Phosphorylated in Response to DNA Damage
BACKGROUND Multiple endocrine neoplasia type 1 (MEN1) is a heritable cancer syndrome characterized by tumors of the pituitary, pancreas and parathyroid. Menin, the product of the MEN1 gene, is a tumor suppressor protein that functions in part through the regulation of transcription mediated by interactions with chromatin modifying enzymes. PRINCIPAL FINDINGS Here we show menin association wit...
متن کاملProcessing of topoisomerase I cleavable complexes into DNA damage by transcription.
Topoisomerase I (TOP1)-mediated DNA damage induced by camptothecin (CPT) in the presence of active transcription has been studied using purified calf thymus TOP1 and T7 RNA polymerase. CPT-stabilized TOP1 cleavable complexes located on the template strand within the transcribed region were found to be converted into irreversible strand breaks by the elongating RNA polymerase. By contrast, CPT-s...
متن کاملPhosphorylation and functions of the RNA polymerase II CTD.
The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association o...
متن کاملRPA and ATR link transcriptional stress to p53.
The mechanisms by which DNA-damaging agents trigger the induction of the stress response protein p53 are poorly understood but may involve alterations of chromatin structure or blockage of either transcription or replication. Here we show that transcription-blocking agents can induce phosphorylation of the Ser-15 site of p53 in a replication-independent manner. Furthermore, microinjection of an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013