Alumina reinforced eucryptite ceramics : very low thermal expansion material with improved mechanical properties
نویسندگان
چکیده
Composite materials formed by a LAS matrix reinforced with second phases are promising materials in many applications where better mechanical properties than those corresponding to conventional low thermal expansion coefficient materials are required. In this study we will show the capability of the design of a LAS-alumina submicron composite. The main scope of this work is to test the sinterability of the composites and to design a composition for a very low thermal expansion submicron composite. For this purpose, Taimei alumina (TM-DAR) powders and an ad-hoc synthesized βeucryptite phase were used to fabricate the composite. XRD phase compositions and microstructures are discussed together with data from dilatometries in a wide temperature range. The results obtained show the possibility of designing a submicron composite with a very low thermal expansion coefficient and improved mechanical properties that can be used in oxidizing conditions. *Manuscript
منابع مشابه
Studying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method
In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respec...
متن کاملInspired by Abalone Shell: Strengthening of Porous Ceramics with Polymers
INTRODUCTION Alumina ceramics have long been of technological importance. However, their brittleness limits their potential for use in structural applications. Traditional approaches proposed to improve the strength and reliability of ceramics include: decrease flaw size, improve fracture toughness and flaw insensitivity, and decrease applied stresses. Polymers on the other hand, although weak,...
متن کاملA novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties.
Engineering ceramics have high stiffness, excellent thermostability, and relatively low density, but their brittleness impedes their use as structural materials. Incorporating carbon nanotubes (CNTs) into a brittle ceramic might be expected to provide CNT/ceramic composites with both high toughness and high temperature stability. Until now, however, materials fabrication difficulties have limit...
متن کاملInvestigation on Mechanism of Cordierite Formation from Nano Silica-Magnesium chloride-Reactive Alumina
Cordierite ceramics are used as refractory materials and kiln furnaces tools due to their very low coefficient of thermal expansion, high corrosion resistance and excellent thermal shock resistance. The aim of the present work was to synthesis of cordierite with raw materials including nano silica, magnesium chloride and reactive alumina. The synthesis procedure is done at solid state. Mechanis...
متن کاملImproving of Microstructure and Mechanical Properties of Al-A356 Alloy with Compo-Casting Method
Aluminum/alumina composites are used in automotive and aerospace industries due to their low density and good mechanical strength. In this research, the effect of mechanical stirring of slurry in liquid-solid phase temperature and injection of alumina powder with inert gas (Ar) on microstructure and mechanical properties of Al-A356 alloy is investigated. In order to improve of the wettability a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012