Some a priori bounds for solutions of the constant Gauss curvature equation

نویسنده

  • Rafael López
چکیده

In this work, we give a priori height and gradient estimates for solutions of the prescribed constant Gauss curvature equation in Euclidean space. We shall consider convex radial graphs with positive constant mean curvature. The estimates are established by considering in such a graph, the Riemannian metric given by the second fundamental form of the immersion. r 2003 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON A PRIORI C1,α AND W2,p ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION IN THE GAUSS CURVATURE FLOWS

This paper establishes Hölder estimates of Du and Lp estimates of D2u for solutions u to the parabolic Monge-Ampère equation −Aut + ( det D2u)1/n = f .

متن کامل

Moduli Space Theory for Constant Mean Curvature Surfaces Immersed in Space-forms

The study of constant mean curvature surfaces in a space-form has been an active field since the work of H. Hopf in the 1920’s and H.Liebmann in the years around 1900. The questions which are generally of interest are global questions of existence and uniqueness in complete 3-manifolds. We deal in this short paper on a question of existence and uniqueness with respect to the complex structure a...

متن کامل

Periodic solutions for prescribed mean curvature Rayleigh equation with a deviating argument

where τ , e ∈ C(R,R) are T-periodic, and f , g ∈ C(R × R,R) are T-periodic in the first argument, T >  is a constant. In recent years, there are many results on the existence of periodic solutions for various types of delay differential equation with deviating arguments, especially for the Liénard equation and Rayleigh equation (see [–]). Now as the prescribed mean curvature ( x ′(t) √ +x′...

متن کامل

Bounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

A geometric interpretation of the spectral parameter for surfaces of constant mean curvature

Considering the kinematics of the moving frame associated with a constant mean curvature surface immersed in S we derive a linear problem with the spectral parameter corresponding to elliptic sinh-Gordon equation. The spectral parameter is related to the radius R of the sphere S. The application of the Sym formula to this linear problem yields constant mean curvature surfaces in E. Independentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002