Pixel-by-pixel precise delay correction for measurement of cerebral hemodynamic parameters in H215O PET study

نویسندگان

  • Muhammad M Islam
  • Tetsuya Tsujikawa
  • Tetsuya Mori
  • Yasushi Kiyono
  • Hidehiko Okazawa
چکیده

OBJECTIVE A new method of delay time estimation was proposed to measure precise cerebral blood flow (CBF) and arterial-to-capillary blood volume (V 0) using 15O-water PET. METHODS Nineteen patients with unilateral arterial stenoocclusive lesions were studied to evaluate hemodynamic status before treatment. The delay time of each pixel was calculated using least squares fitting with an arterial blood input curve adjusted to the internal carotid artery counts at the skull base. Pixel-by-pixel delay estimation provided a delay map image that could be used for precise calculation of CBF and V 0 using a one-tissue compartment model, and the values from this method were compared with those from the slice-by-slice correction method. RESULTS The affected side showed a longer delay time than the contralateral cerebral hemisphere. Although the mean cortical CBF values were not different between the two methods, the slice-by-slice delay correction overestimated CBF in the hypo perfused area. The scatter plot of V 0 pixel values showed significant difference between the two correction methods where the slice-by-slice delay correction significantly overestimated V 0 in the whole brain (P < 0.05). CONCLUSION Pixel-by-pixel delay correction provides delay images as well as better estimation of CBF and V 0, thus offering useful and beneficial information for the treatment of cerebrovascular disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arterial Transit Time Mapping Obtained by Pulsed Continuous 3D ASL Imaging with Multiple Post-Label Delay Acquisitions: Comparative Study with PET-CBF in Patients with Chronic Occlusive Cerebrovascular Disease

Arterial transit time (ATT) is most crucial for measuring absolute cerebral blood flow (CBF) by arterial spin labeling (ASL), a noninvasive magnetic resonance (MR) perfusion assessment technique, in patients with chronic occlusive cerebrovascular disease. We validated ASL-CBF and ASL-ATT maps calculated by pulsed continuous ASL (pCASL) with multiple post-label delay acquisitions in patients wit...

متن کامل

Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters

Objective(s): We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF)-based positron emission tomography (PET) image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL) for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline or...

متن کامل

Attenuation Correction in SPECT during Image Reconstruction using an Inverse Monte Carlo Method: A Simulation Study

Introduction: The main goal of SPECT imaging is to determine activity distribution inside the organs of the body. However, due to photon attenuation, it is almost impossible to do a quantitative study. In this paper, we suggest a mathematical relationship between activity distribution and its corresponding projections using a transfer matrix. Monte Carlo simulation was used to find a precise tr...

متن کامل

Image Quality Enhancement Using Pixel Wise Gamma Correction

This paper presents a new automatic image enhancement method by modifying the gamma value of its individual pixels. Most of existing gamma correction methods apply a uniform gamma value across the image. Considering the fact that gamma variation for a single image is actually nonlinear, the proposed method locally estimates the gamma values in an image using support vector machine. First, a dat...

متن کامل

روشی نوین در کاهش نوفه رایسین از مقدار بزرگی سیگنال دیفیوژن در تصویربرداری تشدید مغناطیسی (MRI)

The true MR signal intensity extracted from noisy MR magnitude images is biased with the Rician noise caused by noise rectification in the magnitude calculation for low intensity pixels. This noise is more problematic when a quantitative analysis is performed based on the magnitude images with low SNR(<3.0). In such cases, the received signal for both the real and imaginary components will fluc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2017