Enhanced binding to DNA and topoisomerase I inhibition by an analog of the antitumor antibiotic rebeccamycin containing an amino sugar residue.
نویسندگان
چکیده
Many antitumor agents contain a carbohydrate side chain appended to a DNA-intercalating chromophore. This is the case with anthracyclines such as daunomycin and also with indolocarbazoles including the antibiotic rebeccamycin and its tumor active analog, NB506. In each case, the glycoside residue plays a significant role in the interaction of the drug with the DNA double helix. In this study we show that the DNA-binding affinity and sequence selectivity of a rebeccamycin derivative can be enhanced by replacing the glucose residue with a 2'-aminoglucose moiety. The drug-DNA interactions were studied by thermal denaturation, fluorescence, and footprinting experiments. The thermodynamic parameters indicate that the newly introduced amino group on the glycoside residue significantly enhanced binding to DNA by increasing the contribution of the polyelectrolyte effect to the binding free energy, but does not appear to participate in any specific molecular contacts. The energetic contribution of the amino group of the rebeccamycin analog was found to be weaker than that of the sugar amino group of daunomycin, possibly because the indolocarbazole derivative is only partially charged at neutral pH. Topoisomerase I-mediated DNA cleavage studies reveal that the OH-->NH2 substitution does not affect the capacity of the drug to stabilize enzyme-DNA covalent complexes. Cytotoxicity studies with P388 leukemia cells sensitive or resistant to camptothecin suggest that topoisomerase I represents a privileged intracellular target for the studied compounds. The role of the sugar amino group is discussed. The study provides useful guidelines for the development of a new generation of indolocarbazole-based antitumor agents.
منابع مشابه
Recognition of specific sequences in DNA by a topoisomerase I inhibitor derived from the antitumor drug rebeccamycin.
We investigated the interaction with DNA of two synthetic derivatives of the antitumor antibiotic rebeccamycin: R-3, which is a potent topoisomerase I inhibitor and contains a methoxyglucose moiety appended to the indolocarbazole chromophore, and its aglycone, R-4. Spectroscopic measurements indicate that R-3 intercalates into DNA and that its carbohydrate domain contributes significantly to re...
متن کاملRebeccamycin derivatives as dual DNA-damaging agents and potent checkpoint kinase 1 inhibitors.
Rebeccamycin is an indolocarbazole class inhibitor of topoisomerase I. In the course of structure-activity relationship studies on rebeccamycin derivatives, we have synthesized analogs with the sugar moiety attached to either one or both indole nitrogens. Some analogs, especially those with substitutions at the 6' position of the carbohydrate moiety, exhibit potent inhibitory activity toward ch...
متن کاملBINDING OF THE ANTITUMOR DRUG ADRIAMYCIN TO DNA-HISTONE COMPLEXES
Isotherms of the binding of the anthracycIine antibiotic, adriamycin (adriblastin), to DNA histone complexes was studied by means of spectroscopic analysis. The results indicated that: (a) binding of adriamycin to histones reduced the interaction of histones with DNA, (b) binding of the drug to DNA did not change the binding affinity of histone to DNA and, (c) in the explored binding range...
متن کاملDNA sequence recognition by the indolocarbazole antitumor antibiotic AT2433-B1 and its diastereoisomer.
The antibiotic AT2433-B1 belongs to a therapeutically important class of antitumor agents. This natural product contains an indolocarbazole aglycone connected to a unique disaccharide consisting of a methoxyglucose and an amino sugar subunit, 2,4-dideoxy-4-methylamino-L-xylose. The configuration of the amino sugar distinguishes AT2433-B1 from its diastereoisomer iso-AT2433-B1. Here we have inve...
متن کاملIntercalation into DNA is not required for inhibition of topoisomerase I by indolocarbazole antitumor agents.
The DNA-intercalating antitumor drug NB-506 is a potent topoisomerase poison currently undergoing phase I/II clinical trials. It contains a planar indolocarbazole chromophore substituted with a glucose residue. Up until now, it was thought that intercalation of the drug into DNA was essential for the stabilization of topoisomerase I-DNA covalent complexes. But, in the present study, we show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 55 2 شماره
صفحات -
تاریخ انتشار 1999