Studying Multivariate Change Using Multilevel Models and Latent Curve Models.
نویسندگان
چکیده
In longitudinal research investigators often measure multiple variables at multiple points in time and are interested in investigating individual differences in patterns of change on those variables. In the vast majority of applications, researchers focus on studying change in one variable at a time. In this article we consider methods for studying relations1.1ips between patterns of change on different variables. We show how the multilevel modeling framework, which is often used to study univariate change, can be extended to the multivariate case to yield estimates of covariances of parameters representing aspects of change on different variables. We illustrate this approach using data from a study of physiological response to marital conflict in older married couples, showing a substantial correlation between rate of linear change on different stress-related hormones during conflict. We also consider how similar issues can be studied using extensions of latent curve models to the multivariate case, and we show how such models are related to multivariate multilevel models.
منابع مشابه
Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملAnalyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models
Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multipl...
متن کاملMultilevel Models for Longitudinal Data
Repeated measures and repeated events data have a hierarchical structure which can be analysed using multilevel models. A growth curve model is an example of a multilevel random coefficients model, while a discrete-time event history model for recurrent events can be fitted as a multilevel logistic regression model. The paper describes extensions to the basic growth curve model to handle autoco...
متن کاملModeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories.
We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of rates of change and acceleration in latent growth curves-information available indirectly through traditional growth curve models when change patterns are nonlinear with respect to time. To illu...
متن کاملNonlinear Structured Growth Mixture Models in Mplus and OpenMx.
Growth mixture models (GMMs; Muthén & Muthén, 2000; Muthén & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models because of their common use, flexibility in modeling many types of change...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Multivariate behavioral research
دوره 32 3 شماره
صفحات -
تاریخ انتشار 1997