Neural Networks Integrated Circuit for Biomimetics MEMS Microrobot

نویسندگان

  • Ken Saito
  • Kazuaki Maezumi
  • Yuka Naito
  • Tomohiro Hidaka
  • Kei Iwata
  • Yuki Okane
  • Hirozumi Oku
  • Minami Takato
  • Fumio Uchikoba
چکیده

In this paper, we will propose the neural networks integrated circuit (NNIC) which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS) microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generates the driving waveform using synchronization phenomena such as biological neural networks. The driving waveform can operate the actuators of the MEMS microrobot directly. Therefore, the NNIC bare chip realizes the robot control without using any software programs or A/D converters. The microrobot performed forward and backward locomotion, and also changes direction by inputting an external single trigger pulse. The locomotion speed of the microrobot was 26.4 mm/min when the step width was 0.88 mm. The power consumption of the system was 250 mWh when the room temperature was 298 K. OPEN ACCESS Robotics 2014, 3 236

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MEMS Microrobot with Pulse- Type Hardware Neural Networks Integrated Circuit

Hexapod locomotive Micro-Electro Mechanical Systems (MEMS) microrobot with Pulse-type Hardware Neural Networks (P-HNN) locomotion controlling system is presented in this chapter. MEMS microrobot is less than 5 mm width, length, and height in size. MEMS microrobot is made from a silicon wafer fabricated by micro fabrication technology to realize the small size mechanical components. The mechanic...

متن کامل

Miniaturized Rotary Actuators Using Shape Memory Alloy for Insect-Type MEMS Microrobot

Although several types of locomotive microrobots have been developed, most of them have difficulty locomoting on uneven surfaces. Thus, we have been focused on microrobots that can locomote using step patterns. We are studying insect-type microrobot systems. The locomotion of the microrobot is generated by rotational movements of the shape memory alloy-type rotary actuator. In addition, we have...

متن کامل

Hexapod Type Microrobot Controlled by Power Type IC of Artificial Neural Networks

In this paper, we report the hexapod type micro robot controlled by the neural networks. MEMS (Micro Electro Mechanical System) technology that based on the semiconductor process is used for fabrication of the microrobot. The rotational actuator is composed of four artificial muscle wires that is family of SMA (shape memory alloy). The power type bare chip IC is used for neural networks control...

متن کامل

Locomotion Control of MEMS Microrobot Using Pulse-Type Hardware Neural Networks

This paper presents the locomotion control of a microelectromechanical system (MEMS) microrobot. The MEMS microrobot demonstrates locomotion control by pulse-type hardware neural networks (P-HNN). P-HNN generate oscillatory patterns of electrical activity like those of living organisms. The basic component of P-HNN is a pulse-type hardware neuron model (P-HNM). The P-HNM has the same basic feat...

متن کامل

A MEMS Capacitive Microphone Modelling for Integrated Circuits

In this paper, a model for MEMS capacitive microphone is presented for integrated circuits.  The microphone has a diaphragm thickness of 1 μm, 0.5 × 0.5 mm2 dimension, and an air gap of 1.0 μm. Using the analytical and simulation results, the important features of MEMS capacitive microphone such as pull-in voltage and sensitivity are obtained 3.8v and 6.916 mV/Pa, respectively while there is no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Robotics

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014