Dynamical transition of protein-hydration water.

نویسندگان

  • W Doster
  • S Busch
  • A M Gaspar
  • M-S Appavou
  • J Wuttke
  • H Scheer
چکیده

Thin layers of water on biomolecular and other nanostructured surfaces can be supercooled to temperatures not accessible with bulk water. Chen et al. [Proc. Natl. Acad. Sci. U.S.A. 103, 9012 (2006)]10.1073/pnas.0602474103 suggested that anomalies near 220 K observed by quasielastic neutron scattering can be explained by a hidden critical point of bulk water. Based on more sensitive measurements of water on perdeuterated phycocyanin, using the new neutron backscattering spectrometer SPHERES, and an improved data analysis, we present results that show no sign of such a fragile-to-strong transition. The inflection of the elastic intensity at 220 K has a dynamic origin that is compatible with a calorimetric glass transition at 170 K. The temperature dependence of the relaxation times is highly sensitive to data evaluation; it can be brought into perfect agreement with the results of other techniques, without any anomaly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling of protein and hydration-water dynamics in biological membranes.

The dynamical coupling between proteins and their hydration water is important for the understanding of macromolecular function in a cellular context. In the case of membrane proteins, the environment is heterogeneous, composed of lipids and hydration water, and the dynamical coupling might be more complex than in the case of the extensively studied soluble proteins. Here, we examine the dynami...

متن کامل

Computational investigation of dynamical transitions in Trp-cage miniprotein powders

We investigate computationally the dynamical transitions in Trp-cage miniprotein powders, at three levels of hydration: 0.04, 0.26 and 0.4 g water/g protein. We identify two distinct temperatures where transitions in protein dynamics occur. Thermal motions are harmonic and independent of hydration level below Tlow ≈ 160 K, above which all powders exhibit harmonic behavior but with a different a...

متن کامل

Role of the solvent in the dynamical transitions of proteins: the case of the lysozyme-water system.

We study the dynamics of hydration water in the protein lysozyme in the temperature range 180 K<T<360 K using Fourier-transform-infrared and nuclear magnetic resonance (NMR) spectroscopies. By analyzing the thermal evolution of spectra of the OH-stretching vibration modes and the NMR self-diffusion (DS) and spin-lattice relaxation time (T1), we demonstrate the existence of two dynamical transit...

متن کامل

Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins

Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 3...

متن کامل

Depth dependent dynamics in the hydration shell of a protein.

We study the dynamics of hydration water/protein association in folded proteins using lysozyme and myoglobin as examples. Extensive molecular dynamics simulations are performed to identify underlying mechanisms of the dynamical transition that corresponds to the onset of amplified atomic fluctuations in proteins. The results indicate that the number of water molecules within a cutoff distance o...

متن کامل

Observation of fragile-to-strong dynamic crossover in protein hydration water.

At low temperatures, proteins exist in a glassy state, a state that has no conformational flexibility and shows no biological functions. In a hydrated protein, at temperatures greater-- similar 220 K, this flexibility is restored, and the protein is able to sample more conformational substates, thus becoming biologically functional. This "dynamical" transition of protein is believed to be trigg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 104 9  شماره 

صفحات  -

تاریخ انتشار 2010