Bayesian Nonparametric Weighted Sampling Inference
نویسندگان
چکیده
It has historically been a challenge to perform Bayesian inference in a design-based survey context. The present paper develops a Bayesian model for sampling inference in the presence of inverse-probability weights. We use a hierarchical approach in which we model the distribution of the weights of the nonsampled units in the population and simultaneously include them as predictors in a nonparametric Gaussian process regression. We use simulation studies to evaluate the performance of our procedure and compare it to the classical designbased estimator. We apply our method to the Fragile Family Child Wellbeing Study. Our studies find the Bayesian nonparametric finite population estimator to be more robust than the classical design-based estimator without loss in efficiency, which works because we induce regularization for small cells and thus this is a way of automatically smoothing the highly variable weights.
منابع مشابه
Bayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملBayesian methods for partial stochastic orderings
We discuss two methods of making nonparametric Bayesian inference on probability measures subject to a partial stochastic ordering. The first method involves a nonparametric prior for a measure on partially ordered latent observations, and the second involves rejection sampling. Computational approaches are discussed for each method, and interpretations of prior and posterior information are di...
متن کاملAn Assessment of Bayesian Inference
A Monte Carlo study is performed to assess the properties of a Bayesian procedure for inference in nonparametric regression with a binary response variable. The logodds (logit) of the probability of the response is modeled as an integrated Wiener process. This leads to a generalized smoothing spline as the posterior mode. Such priors have been used by many authors for nonparametric regression w...
متن کاملBayesian time series models and scalable inference
With large and growing datasets and complex models, there is an increasing need for scalable Bayesian inference. We describe two lines of work to address this need. In the first part, we develop new algorithms for inference in hierarchical Bayesian time series models based on the hidden Markov model (HMM), hidden semi-Markov model (HSMM), and their Bayesian nonparametric extensions. The HMM is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013