Triple-helix formation in the antiparallel binding motif of oligodeoxynucleotides containing N(9)- and N(7)-2-aminopurine deoxynucleosides.

نویسندگان

  • S P Parel
  • C J Leumann
چکیده

Triplex-forming oligodeoxynucleotide 15mers, designed to bind in the antiparallel triple-helical binding motif, containing single substitutions (Z) of the four isomeric alphaN(7)-, betaN(7)-, alphaN(9)- and betaN(9)-2-aminopurine (ap)-deoxyribonucleosides were prepared. Their association with double-stranded DNA targets containing all four natural base pairs (X-Y) opposite the aminopurine residues was determined by quantitative DNase I footprint titration in the absence of monovalent metal cations. The corresponding association constants were found to be in a rather narrow range between 1.0 x 10(6) and 1.3 x 10(8) M(-1). The following relative order in Z x X-Y base-triple stabilities was found: Z = alphaN(7)ap: T-A > A-T> C-G approximately G-C; Z = betaN(7)ap: A-T > C-G > G-C > T-A; Z = alphaN(9)ap: A-T = G-C > T-A > C-G; and Z = betaN(9)ap: G-C > A-T > C-G > T-A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to the synthesis of a protected 2-aminopurine derivative and its incorporation into oligodeoxynucleotides containing the Eco RI and Bam HI recognition sites.

A protected 2-aminopurine nucleoside suitable for incorporation into oligodeoxynucleotides using phosphite triester chemical synthesis procedures has been prepared via oxidation of a purine hydrazino derivative with silver (I) oxide. Five oligodeoxynucleotides containing Eco RI and Bam HI recognition sites have been prepared such that, in the double stranded form, the 2-aminopurine base has eit...

متن کامل

An anti-parallel triple helix motif with oligodeoxynucleotides containing 2'-deoxyguanosine and 7-deaza-2'-deoxyxanthosine.

Triple helix formation of oligodeoxynucleotides (ODNs) with a 15 base pair poly-purine DNA target in the HER2 promoter was examined by footprinting analysis. 7-deaza-2'-deoxyxanthosine (dzaX) was identified as a purine analogue of thymidine (T) which forms dzaX:A-T triplets. ODNs containing 2'-deoxyguanosine (G) and dzaX were found to form triple helices in an anti-parallel orientation, with re...

متن کامل

Repression of bacteriophage promoters by DNA and RNA oligonucleotides.

We are interested in creating artificial gene repressors based on duplex DNA recognition by nucleic acids rather than polypeptides. An in vitro model system involving repression of bacteriophage T7 RNA polymerase initiation has been employed to demonstrate that certain DNA oligonucleotides can repress transcription by site-specific triple-helix formation at two kinds of homopurine operator sequ...

متن کامل

Oligodeoxynucleotides containing 3-bromo-3-deazaadenine and 7-bromo-7-deazaadenine 2'-deoxynucleosides as chemical probes to investigate DNA-protein interactions.

We describe the design and proof of concept of a pair of chemical probes for investigating DNA-protein interactions-specifically, the incorporation of 7-bromo-7-deazaadenine and 3-bromo-3-deazaadenine 2'-deoxynucleosides (Br(7)C(7)dA and Br(3)C(3)dA) into oligodeoxynucleotides (ODNs)-and their utility. Whereas the bromo substituent of the Br(7)C(7)dA unit in an ODN duplex acts sterically to inh...

متن کامل

Sequence-specific alkylation and cleavage of DNA mediated by purine motif triple helix formation.

An N-bromoacetyl electrophile attached to the 5'-phosphate group of a purine-rich oligonucleotide affords sequence-specific alkylation of duplex DNA (at 37 degrees C, pH 7.4) through the formation of a specific purine.purine.pyrimidine triple-helical complex. In a 645 bp restriction fragment containing three consecutive guanine bases adjacent to the 3'-end of an oligonucleotide binding site, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 11  شماره 

صفحات  -

تاریخ انتشار 2001