Killing by bactericidal antibiotics does not depend on reactive oxygen species.
نویسندگان
چکیده
Bactericidal antibiotics kill by modulating their respective targets. This traditional view has been challenged by studies that propose an alternative, unified mechanism of killing, whereby toxic reactive oxygen species (ROS) are produced in the presence of antibiotics. We found no correlation between an individual cell's probability of survival in the presence of antibiotic and its level of ROS. An ROS quencher, thiourea, protected cells from antibiotics present at low concentrations, but the effect was observed under anaerobic conditions as well. There was essentially no difference in survival of bacteria treated with various antibiotics under aerobic or anaerobic conditions. This suggests that ROS do not play a role in killing of bacterial pathogens by antibiotics.
منابع مشابه
Peptidoglycan Recognition Proteins Kill Bacteria by Inducing Oxidative, Thiol, and Metal Stress
Mammalian Peptidoglycan Recognition Proteins (PGRPs) are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS), a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiot...
متن کاملThe extracellular death factor (EDF) protects Escherichia coli by scavenging hydroxyl radicals induced by bactericidal antibiotics
The newly discovered extracellular death factor (EDF) is a pentapeptide with the sequence NNWNN in Escherichia coli. It was reported that it participated in the cell death process mediated by toxin-antitoxin system mazEF. Reactive oxygen species (ROS) are recently considered as common factors for bactericidal antibiotics-mediated cell death. Previous study indicated that EDF could scavenge hydr...
متن کاملAntibiotics induce redox-related physiological alterations as part of their lethality.
Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test t...
متن کاملLoss of Antibiotic Tolerance in Sod-Deficient Mutants Is Dependent on the Energy Source and Arginine Catabolism in Enterococci.
UNLABELLED Enterococci are naturally tolerant to typically bactericidal cell wall-active antibiotics, meaning that their growth is inhibited but they are not killed even when exposed to a high concentration of the drug. The molecular reasons for this extraordinary tolerance are still incompletely understood. Previous work showed that resistance to killing collapsed specifically in mutants affec...
متن کاملBactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology
It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH•) formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF) probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 339 6124 شماره
صفحات -
تاریخ انتشار 2013