Microscopic origin of thermodynamic entropy in isolated systems.
نویسندگان
چکیده
The quantum entropy is usually defined using von Neumann's formula, which measures lack of information and vanishes for pure states. In contrast, we obtain a formula for the entropy of a pure state as it is measured from thermodynamic experiments, solely from the self-entanglement of the wave function, and find strong numerical evidence that the two are in agreement for nonintegrable systems, both for energy eigenstates and for states that are obtained at long times under the evolution of more general initial conditions. This is an extension of Boltzmann's hypothesis for classical systems, relating microscopic motion to thermodynamics.
منابع مشابه
Thermal Contact
The concepts of temperature and entropy as applied in equilibrium thermodynamics do not easily generalize to nonequilibrium systems and there are transient systems where thermodynamics cannot apply. However, it is possible that nonequilibrium steady states may have a thermodynamics description. We explore the consequences of a particular microscopic thermostat-reservoir contact needed to both s...
متن کاملThermodynamic entropy and excess information loss in dynamical systems with time-dependent Hamiltonian
We study a dynamical system with time dependent Hamiltonian by numerical experiments so as to find a relation between thermodynamics and chaotic nature of the system. Excess information loss, defined newly based on Lyapunov analysis, is related to the increment of thermodynamic entropy. Our numerical results suggest that the positivity of entropy increment is expressed by the principle of the m...
متن کاملTheoretical thermodynamic study of Pyrazole in the gas phase at the different temperatures
The thermodynamic functions such as enthalpy (H), Gibbs free energy (G) and entropy (S) ofPyrazole was theoretically studied at 5 different temperatures 25, 30, 35, 40 and 45°C by usingGussian o3, software. First, the structural optimization of isolated Pyrazole was done in the gas phaseby appling the Density Functional Theory (B3LYP) level with 3-21G, 6-31G and 6-31+G(d) basissets. Moreover, v...
متن کاملTheoretical Thermodynamic Study of Arginine and Lysine Amino Acids at different Solvents
The thermodynamic functions such as enthalpy, H°, Gibbs free energy, G°, and entropy, S°, of Arginine and Lysine amino acids were theoretically studied at different polar solvents by using ²Gaussian o3², software. First, the structural optimization of isolated Arginine and Lysine were done in the gas phase by applying the Density Functional Theory (B3LYP) level ...
متن کاملTheoretical study of the solvent effects on the thermodynamic functions of Alanine and Valine Amino Acids
Using Gaussian 03, software the thermodynamic functions such as Gibbs free energy, G, Enthalpy, H, and Entropy, S, of Alanine and Valine amino acids were theoretically studied at different solvents. First, the Density Functional Theory (B3LYP) level with 3-21G, 6-31G and 6-31+G basis sets were employed to optimization of isolated Alanine and Valine amino acids in the gas phase. Moreover, Vib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 4 شماره
صفحات -
تاریخ انتشار 2013