Inference for multivariate normal mixtures
نویسندگان
چکیده
Multivariate normal mixtures provide a flexible model for high-dimensional data. They are widely used in statistical genetics, statistical finance, and other disciplines. Due to the unboundedness of the likelihood function, classical likelihoodbased methods, which may have nice practical properties, are inconsistent. In this paper, we recommend a penalized likelihood method for estimating the mixing distribution. We show that the maximum penalized likelihood estimator is strongly consistent when the number of components has a known upper bound. We also explore a convenient EM-algorithm for computing the maximum penalized likelihood estimator. Extensive simulations are conducted to explore the effectiveness and the practical limitations of both the new method and the ratified maximum likelihood estimators. Guidelines are provided based on the simulation results.
منابع مشابه
Adaptive neuro-fuzzy inference system (ANFIS) applied for spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
The UV-spectrophotometric method of analysis was proposed for simultaneous determination of fluoxetine (FLX) and sertraline (SRT). Considering the strong spectral overlap between UV-Vis spectra of these compounds, a previous separation should be carried out in order to determine them by conventional spectrophotometric techniques. Here, full-spectrum multivariate calibrations adaptive neuro-fuzz...
متن کاملShape mixtures of multivariate skew-normal distributions
Classes of shape mixtures of independent and dependent multivariate skew-normal distributions are considered and some of their main properties are studied. If interpreted from a Bayesian point of view, the results obtained in this paper bring tractability to the problem of inference for the shape parameter, that is, the posterior distribution can be written in analytic form. Robust inference fo...
متن کاملComparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions
Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...
متن کاملThe L1-consistency of Dirichlet mixtures in multivariate Bayesian density estimation
Density estimation, especiallymultivariate density estimation, is a fundamental problem in nonparametric inference. In the Bayesian approach, Dirichlet mixture priors are often used in practice for such problems. However, the asymptotic properties of such priors have only been studied in the univariate case. We extend the L1-consistency of Dirichlet mixutures in the multivariate density estimat...
متن کاملLearning Multivariate Gaussian Mixtures with the Re- versible Jump MCMC Algorithm
This paper is a contribution to the methodology of fully Bayesian inference in multivariate Gaussian mixtures using the reversible jump Markov chain Monte Carlo algorithm. To make use of the spectral representation of symmetric positive definite matrix, we decompose covariance matrix into two parts: an eigenvector matrix and an eigenvalue matrix. We focus our attention on a family of multivaria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Multivariate Analysis
دوره 100 شماره
صفحات -
تاریخ انتشار 2009