A Computer Aided Pulmonary Nodule Detection System Using Multiple Massive Training SVMs
نویسندگان
چکیده
A computer aided pulmonary nodule detection system for chest radiography is proposed. The system consists of three models, viz., lung segmentation, lung nodule candidates detection and false positive reduction. Several innovations are offered in this system. The first one is that the detection of potential lung nodule candidates is conceived as a filtering process that searches for any region which has a spherical structure (where a potential nodule may happen to occur) in a chest radiograph by analysis eignvalues of Hessian matrix of an image. The second one is that a novel two stage classifier based method is developed to address the problem of false positive reduction in lung nodule detection, in which a rules based classifier is followed by a filter termed as multiple massive training supported vector machine (MTSVM), where the rules based classifier is employed to quickly remove obvious FP (outliers) so that their influence on the training of MTSVM was eliminated, the MTSVM is developed to further separate nodules from nonnodule candidates. Experimental results suggest that the proposed CAD scheme was superior to others in FPs reduction of lung nodule detection in chest
منابع مشابه
A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients
Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...
متن کاملFalse-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network.
RATIONALE AND OBJECTIVE We developed a technique that uses a multiple massive-training artificial neural network (multi-MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nodules in chest radiographs. MATERIALS AND METHODS Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and 27 benign nodules, ...
متن کاملSurvey on Perception of People Regarding Utilization of Computer Science & Information Technology in Manipulation of Big Data, Disease Detection & Drug Discovery
this research explores the manipulation of biomedical big data and diseases detection using automated computing mechanisms. As efficient and cost effective way to discover disease and drug is important for a society so computer aided automated system is a must. This paper aims to understand the importance of computer aided automated system among the people. The analysis result from collected da...
متن کاملAutomated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملAutomated pulmonary nodule detection based on three-dimensional shape-based feature descriptor
Computer-aided detection (CAD) can help radiologists to detect pulmonary nodules at an early stage. In pulmonary nodule CAD systems, feature extraction is very important for describing the characteristics of nodule candidates. In this paper, we propose a novel three-dimensional shape-based feature descriptor to detect pulmonary nodules in CT scans. After lung volume segmentation, nodule candida...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013