Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells.

نویسندگان

  • Court A Hull
  • YunXiang Chu
  • Monica Thanawala
  • Wade G Regehr
چکیده

Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics that govern the activity of these cells. In particular, although GoC spontaneous spiking influences the extent of inhibition and gain throughout the granule cell layer, it is not known whether this spontaneous activity can be modulated in a long-term manner. Here we describe a form of long-term plasticity that regulates the spontaneous firing rate of GoCs in the rat cerebellar cortex. We find that membrane hyperpolarization, either by mGluR2 activation of potassium channels, or by somatic current injection, induces a long-lasting increase in GoC spontaneous firing. This spike rate plasticity appears to result from a strong reduction in the spike after hyperpolarization. Pharmacological manipulations suggest the involvement of calcium-calmodulin-dependent kinase II and calcium-activated potassium channels in mediating these firing rate increases. As a consequence of this plasticity, GoC spontaneous spiking is selectively enhanced, but the gain of evoked spiking is unaffected. Hence, this plasticity is well suited for selectively regulating the tonic output of GoCs rather than their sensory-evoked responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Comparison of Hyperpolarization-Activiated Current “if ” on the Rate of Spontaneous Activity and Cycle Length before and after Cutting of Atrial Muscle away from Intact Sinoatrial Node of Rabbit

It has been shown that the hyperpolarization-activated current “if” that is blocked by 2 mM Cs+ plays a minor role on pacemaker activity of the center and a major role on activity of the periphery of rabbit intact sino-atrial node. On the other hand some investigations showed that if the atrial muscle, surrounding the sino-atrial node, is cut away there is a shift in leading pacemaker site from...

متن کامل

Mechanisms of Spontaneous Climbing Fiber Discharge-Evoked Pauses and Output Modulation of Cerebellar Purkinje Cell in Mice

Climbing fiber (CF) afferents modulate the frequency and patterns of cerebellar Purkinje cell (PC) simple spike (SS) activity, but its mechanism is unclear. In the present study, we investigated the mechanisms of spontaneous CF discharge-evoked pauses and the output modulation of cerebellar PCs in urethane-anesthetized mice using in vivo whole-cell recording techniques and pharmacological metho...

متن کامل

Dendritic control of spontaneous bursting in cerebellar Purkinje cells.

We investigated the mechanisms that contribute to spontaneous regular bursting in adult Purkinje neurons in acutely prepared cerebellar slices. Bursts consisted of 3-20 spikes and showed a stereotypic waveform. Each burst developed with an increase in firing rate and was terminated by a more rapid increase in firing rate and a decrease in spike height. Whole-cell current-clamp recordings showed...

متن کامل

Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells.

Cerebellar Golgi cells inhibit their afferent interneurons, the excitatory granule cells. Such a feedback inhibition causes both inhibitory and excitatory neurons in the circuit to synchronize. Our modeling work predicts that the long granule cell axons, the parallel fibers, entrain many Golgi cells and their afferent granule cells in a single synchronous rhythm. Spontaneous activity of 42 pair...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 14  شماره 

صفحات  -

تاریخ انتشار 2013