Covering morphisms of crossed complexes and of cubical omega-groupoids are closed under tensor product

نویسندگان

  • Ronald Brown
  • Ross Street
چکیده

The aim is the theorems of the title and the corollary that the tensor product of two free crossed resolutions of groups or groupoids is also a free crossed resolution of the product group or groupoid. The route to this corollary is through the equivalence of the category of crossed complexes with that of cubical ω-groupoids with connections where the initial definition of the tensor product lies. It is also in the latter category that we are able to apply techniques of dense subcategories to identify the tensor product of covering morphisms as a covering morphism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Products and Homotopies for Ω-groupoids and Crossed Complexes∗

Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed complexes, nonabelian chain homotopies between them and similar higher homotopies. The tensor product...

متن کامل

Crossed complexes and higher homotopy groupoids as non commutative tools for higher dimensional local-to-global problems

We outline the main features of the definitions and applications of crossed complexes and cubical ω-groupoids with connections. These give forms of higher homotopy groupoids, and new views of basic algebraic topology and the cohomology of groups, with the ability to obtain some non commutative results and compute some homotopy types in non simply connected situations.

متن کامل

The non-abelian tensor product of normal crossed submodules of groups

In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...

متن کامل

Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems

We outline the main features of the definitions and applications of crossed complexes and cubical ωgroupoids with connections. These give forms of higher homotopy groupoids, and new views of basic algebraic topology and the cohomology of groups, with the ability to obtain some non commutative results and compute some homotopy types.

متن کامل

Cubical abelian groups with connections are equivalent to chain complexes

The theorem of the title is deduced from the equivalence between crossed complexes and cubical ω-groupoids with connections proved by the authors in 1981. In fact we prove the equivalence of five categories defined internally to an additive category with kernels.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010