3D imaging using magnetic resonance tomosynthesis (MRT) technique.
نویسندگان
چکیده
PURPOSE To introduce an alternative approach to three-dimensional (3D) magnetic resonance (MR) imaging using a method that is similar to x-ray tomosynthesis. METHODS Variable angle tilted-projection images are acquired using a multiple-oblique view (MOV) pulse sequence. Reconstruction is performed using three methods similar to that of x-ray tomosynthesis, which generate a set of tomographic images with multiple 2D projection images. The reconstruction algorithm is further modified to reformat to the practical imaging situations of MR. The procedure is therefore termed magnetic resonance tomosynthesis (MRT). To analyze the characteristics of MRT, simulations are performed. Phantom and in vivo experiments were done to suggest potential applications. RESULTS Simulation results show anisotropic features that are structurally dependent in terms of resolution. Partial blurrings along slice direction were observed. In phantom and in vivo experiments, the reconstruction performance is particularly noticeable in the low SNR case where improved images with lower noise are obtained. Reformatted reconstruction using thinner slice thickness and∕or extended field-of-view can increase spatial resolution partially and alleviate slice profile imperfection. CONCLUSIONS Results demonstrate that MRT can generate adequate 3D images using the MOV images. Various reconstruction methods in tomosynthesis were readily adapted, while allowing other tomosynthesis reconstruction algorithms to be incorporated. A reformatted reconstruction process was incorporated for applications relevant to MR imaging.
منابع مشابه
Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملDepth-resolving THz imaging with tomosynthesis.
We demonstrated a depth-resolved 3D imaging technique based on absorption contrast using tomosynthesis. Tomosynthesis is similar to computed tomography except that the number of projections is much smaller. We constructed a tomosynthesis imaging system, which detects a transmitted continuous THz wave. We applied a backprojection method that was suitable for the constructed detection configurati...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملFabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملOptimization of clinical target volume delineation using magnetic resonance spectroscopic imaging (MRSI) in 3D conformal radiotherapy of prostate cancer
Background: For the purpose of individual clinical target volume assessment in radiotherapy of prostate cancer, MRSI was used as a molecular imaging modality with MRI and CT images. Materials and Methods: The images of 20 prostate cancer patients were used in this study. The MR and MRSI images were registered with CT ones using non-rigid registration technique. The CT based planning (BP), CT/MR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 39 8 شماره
صفحات -
تاریخ انتشار 2012