Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue
نویسندگان
چکیده
In this study, we present a fiber-optic ball lens Raman probe design for improving depth-selected Raman measurements of epithelial tissue. The Monte Carlo simulation results show that tissue Raman collection efficiency can be improved by properly selecting the refractive index and the diameter of the ball lens for the Raman probe design and the depth-selectivity of Raman measurements can also be improved by either increasing the refractive index or reducing the diameter of the ball lens. An appropriate arrangement of the Raman probe-tissue distance can also optimize the collection efficiency for depth-resolved Raman measurements. Experimental evaluation of a ball lens Raman probe design on a two-layer tissue phantom confirms the potential of the ball lens Raman probe design for efficient depth-selected measurement on epithelial tissue. This work suggests that the fiber-optic Raman probe coupled with a ball lens can facilitate the depth-selected Raman measurements of epithelial tissue, which may improve the diagnosis of epithelial precancer and early cancer at the molecular level.
منابع مشابه
Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue.
A ball lens coupled fiber-optic probe design is described for depth-resolved measurements of the fluorescence and reflectance properties of epithelial tissue. A reflectance target, fluorescence targets, and a two-layer tissue phantom consisting of fluorescent microspheres suspended in collagen are used to characterize the performance of the probe. Localization of the signal to within 300 microm...
متن کاملNon-invasive Quantitative Analysis of Specific Fat Accumulation in Subcutaneous Adipose Tissues using Raman Spectroscopy
Subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and fat beneath the dermis layer were investigated using a ball lens top hollow optical fiber Raman probe (BHRP). Hamsters were fed with trilinolein (TL) and tricaprin (TC) for six weeks and measurements were carried out every two weeks. The BHRP with an 800 μm diameter fused-silica ball lens was able to obtain information on the...
متن کاملDetection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy
Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasi...
متن کاملA portable fiber-optic raman spectrometer concept for evaluation of mineral content within enamel tissue
BACKGROUND Measurement of tooth enamel mineralization using a clinically viable method is essential since variation of mineralization may be used to monitor caries risk or in assessing the effectiveness of remineralization therapy. Fiber optic Raman systems are becoming more affordable and popular in context of biomedical applications. However, the applicability of fiber optic Raman systems for...
متن کاملDevelopment of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo.
The goal of this study was to develop a compact fiber optic probe to measure near infrared Raman spectra of human cervical tissue in vivo for the clinical diagnosis of cervical precancers. A Raman spectrometer and fiber optic probe were designed, constructed and tested. The probe was first tested using standards with known Raman spectra, and then the probe was used to acquire Raman spectra from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2010