Ela Graphs Whose Minimal Rank Is Two
نویسندگان
چکیده
Let F be a field, G = (V, E) be an undirected graph on n vertices, and let S(F, G) be the set of all symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. For example, if G is a path, S(F, G) consists of the symmetric irreducible tridiagonal matrices. Let mr(F, G) be the minimum rank over all matrices in S(F, G). Then mr(F, G) = 1 if and only if G is the union of a clique with at least 2 vertices and an independent set. If F is an infinite field such that char F = 2, then mr(F, G) ≤ 2 if and only if the complement of G is the join of a clique and a graph that is the union of at most two cliques and any number of complete bipartite graphs. A similar result is obtained in the case that F is an infinite field with char F = 2. Furthermore, in each case, such graphs are characterized as those for which 6 specific graphs do not occur as induced subgraphs. The number of forbidden subgraphs is reduced to 4 if the graph is connected. Finally, similar criteria is obtained for the minimum rank of a Hermitian matrix to be less than or equal to two. The complement is the join of a clique and a graph that is the union of any number of cliques and any number of complete bipartite graphs. The number of forbidden subgraphs is now 5, or in the connected case, 3.
منابع مشابه
Ela on Minimal Rank over Finite Fields∗
Let F be a field. Given a simple graph G on n vertices, its minimal rank (with respect to F ) is the minimum rank of a symmetric n× n F -valued matrix whose off-diagonal zeroes are the same as in the adjacency matrix of G. If F is finite, then for every k, it is shown that the set of graphs of minimal rank at most k is characterized by finitely many forbidden induced subgraphs, each on at most ...
متن کاملEla Graphs Whose Minimal Rank Is Two: the Finite Fields Case∗
Let F be a finite field, G = (V, E) be an undirected graph on n vertices, and let S(F,G) be the set of all symmetric n× n matrices over F whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. Let mr(F,G) be the minimum rank of all matrices in S(F,G). If F is a finite field with pt elements, p = 2, it is shown that mr(F,G) ≤ 2 if and only if the compl...
متن کاملEla the Inverse Eigenvalue and Inertia Problems for Minimum Rank Two Graphs∗
Abstract. Let G be an undirected graph on n vertices and let S(G) be the set of all real symmetric n×n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. Let mr(G) denote the minimum rank of all matrices in S(G), and mr+(G) the minimum rank of all positive semidefinite matrices in S(G). All graphs G with mr(G) = 2 and mr+(G) = k are chara...
متن کاملEla Ranges of Sylvester Maps and a Minimal Rank Problem
It is proved that the range of a Sylvester map defined by two matrices of sizes p× p and q × q, respectively, plus matrices whose ranks are bounded above, cover all p× q matrices. The best possible upper bound on the ranks is found in many cases. An application is made to a minimal rank problem that is motivated by the theory of minimal factorizations of rational matrix functions.
متن کاملEla Universally Optimal Matrices and Field Independence of the Minimum Rank of a Graph∗
The minimum rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose (i, j)th entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. A universally optimal matrix is defined to be an integer matrix A such that every off-diagonal entry of A is 0, 1, or −1, and for all fields F , the rank of A is the minimum rank o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004