Mapping multiple photonic qubits into and out of one solid - state atomic ensemble USMANI

نویسندگان

  • Imam Usmani
  • Mikael Afzelius
  • Hugues de Riedmatten
  • Nicolas Gisin
چکیده

The future challenge of quantum communication is scalable quantum networks, which require coherent and reversible mapping of photonic qubits onto atomic systems (quantum memories). A crucial requirement for realistic networks is the ability to effi ciently store multiple qubits in one quantum memory. In this study, we show a coherent and reversible mapping of 64 optical modes at the single-photon level in the time domain onto one solid-state ensemble of rare-earth ions. Our light – matter interface is based on a high-bandwidth (100 MHz) atomic frequency comb, with a predetermined storage time of >~ 1 μs. We can then encode many qubits in short ( < 10 ns) temporal modes (time-bin qubits). We show the good coherence of mapping by simultaneously storing and analysing multiple time-bin qubits. USMANI, Imam, et al. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nature Communications, 2010, p. 1-7 DOI : 10.1038/ncomms1010

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping multiple photonic qubits into and out of one solid-state atomic ensemble.

The future challenge of quantum communication is scalable quantum networks, which require coherent and reversible mapping of photonic qubits onto atomic systems (quantum memories). A crucial requirement for realistic networks is the ability to efficiently store multiple qubits in one quantum memory. In this study, we show a coherent and reversible mapping of 64 optical modes at the single-photo...

متن کامل

Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques ...

متن کامل

Quantum storage of a photonic polarization qubit in a solid.

We report on the quantum storage and retrieval of photonic polarization quantum bits onto and out of a solid state storage device. The qubits are implemented with weak coherent states at the single photon level, and are stored for a predetermined time of 500 ns in a praseodymium doped crystal with a storage and retrieval efficiency of 10%, using the atomic frequency comb scheme. We characterize...

متن کامل

Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.

We demonstrate the first solid-state spin-wave optical quantum memory with on-demand read-out. Using the full atomic frequency comb scheme in a Pr(3+):Y2SiO5 crystal, we store weak coherent pulses at the single-photon level with a signal-to-noise ratio >10. Narrow-band spectral filtering based on spectral hole burning in a second Pr(3+):Y2SiO5 crystal is used to filter out the excess noise crea...

متن کامل

Coherence and Rydberg Blockade of Atomic Ensemble Qubits.

We demonstrate |W⟩ state encoding of multiatom ensemble qubits. Using optically trapped Rb atoms, the T_{2} coherence time is 2.6(3) ms for N[over ¯]=7.6 atoms and scales approximately inversely with the number of atoms. Strong Rydberg blockade between two ensemble qubits is demonstrated with a fidelity of 0.89(1), and with a fidelity of ∼1.0 when postselected on a control ensemble excitation. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017