Generating images with recurrent adversarial networks
نویسندگان
چکیده
Gatys et al. (2015) showed that optimizing pixels to match features in a convolutional network with respect reference image features is a way to render images of high visual quality. We show that unrolling this gradient-based optimization yields a recurrent computation that creates images by incrementally adding onto a visual “canvas”. We propose a recurrent generative model inspired by this view, and show that it can be trained using adversarial training to generate very good image samples. We also propose a way to quantitatively compare adversarial networks by having the generators and discriminators of these networks compete against each other.
منابع مشابه
Speech-Driven Facial Reenactment Using Conditional Generative Adversarial Networks
We present a novel approach to generating photo-realistic images of a face with accurate lip sync, given an audio input. By using a recurrent neural network, we achieved mouth landmarks based on audio features. We exploited the power of conditional generative adversarial networks to produce highly-realistic face conditioned on a set of landmarks. These two networks together are capable of produ...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملStackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aimed at generating high-resolution photorealistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for textto-imag...
متن کاملLanguage Generation with Recurrent Generative Adversarial Networks without Pre-training
Generative Adversarial Networks (GANs) have shown great promise recently in image generation. Training GANs for text generation has proven to be more difficult, because of the non-differentiable nature of generating text with recurrent neural networks. Consequently, past work has either resorted to pre-training with maximumlikelihood or used convolutional networks for generation. In this work, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1602.05110 شماره
صفحات -
تاریخ انتشار 2016