A Theory of Boolean Valued Functions and Quantifiers with Respect to Partitions
نویسندگان
چکیده
In this paper Y denotes a non empty set and G denotes a subset of PARTITIONS(Y ). Let X be a set. Then PARTITIONS(X) is a partition family of X. Let X be a set and let F be a non empty partition family of X. We see that the element of F is a partition of X. The following proposition is true (1) Let y be an element of Y . Then there exists a subset X of Y such that (i) y ∈ X, and (ii) there exists a function h and there exists a family F of subsets of Y such that domh = G and rng h = F and for every set d such that d ∈ G holds h(d) ∈ d and X = Intersect(F ) and X 6= ∅.
منابع مشابه
The ring of real-valued functions on a frame
In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...
متن کاملON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES
Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...
متن کاملPOINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کاملGalois correspondence for counting quantifiers
We introduce a new type of closure operator on the set of relations, max-implementation, and its weaker analog max-quantification. Then we show that approximation preserving reductions between counting constraint satisfaction problems (#CSPs) are preserved by these two types of closure operators. Together with some previous results this means that the approximation complexity of counting CSPs i...
متن کاملSome local fixed point results under $C$-class functions with applications to coupled elliptic systems
The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004