A Generalization of the Gap Forcing Theorem

نویسنده

  • Joel David Hamkins
چکیده

The Main Theorem of this article asserts in part that if an extension V ⊆ V satisfies the δ approximation and covering properties, then every embedding j : V → N definable in V with critical point above δ is the lift of an embedding j ↾ V : V → N definable in the ground model V . It follows that in such extensions there can be no new weakly compact cardinals, totally indescribable cardinals, strongly unfoldable cardinals, measurable cardinals, tall cardinals, strong cardinals, Woodin cardinals, supercompact cardinals, almost huge cardinals and so on. This result generalizes the Gap Forcing Theorem of [Ham01] to a broader class of extensions and to a broader class of embeddings within those extensions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of Titchmarsh's Theorem for the Dunkl Transform

Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$

In this paper‎, ‎using a generalized Dunkl translation operator‎, ‎we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$‎, ‎where $alpha>-frac{1}{2}$.  

متن کامل

A GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM

In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

متن کامل

Carlson Collapse is minimal under MA

Namba forcing [5] may be regarded as a generalization of Laver forcing [2] to ω2. The analogous forcing for ω1 we call the Carlson collapse. We first encountered it when writing our joint paper: Carlson, Kunen, and Miller [1]. In that paper we used the Prikry collapse of ω1, which is analogous to superperfect tree forcing (e.g., Miller [3]) but with subtrees of ω 1 . We proved in [1] the analog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003