A Discrete-time State-space Model with Wake Interference for Stability Analysis of Flexible Aircraft
نویسندگان
چکیده
This paper investigates the coupled aeroelastic and flight dynamics stability of flexible lightweight aircraft. The aerodynamics are modelled by the discrete-time unsteady vortex lattice method, which can capture the large deformations of the lifting surfaces, and includes 3-D effects and in-plane motions. A geometrically-exact composite beam formulation is used to model the nonlinear flexible-body dynamics, including rigid-body motions, and the equations are accommodated to discrete-time formulation. The governing equations are linearised around an equilibrium configuration, which can be highly deformed, performing a small perturbation analysis and assuming a frozen aerodynamic geometry. The resulting framework is a monolithic discrete-time state-space formulation, which provides a powerful tool for the stability boundary prediction of a flexible vehicle through a direct generalized eigenvalue analysis. It offers increased fidelity as compared to traditional tools, and at very low computational cost. As a suitable test case to illustrate the capabilities of this approach, the flutter of a T-tail is examined. In addition, previous open-loop results are extended in order to asses wake interference effects on flexible aircraft dynamics.
منابع مشابه
Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملT-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY
A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...
متن کاملDiscrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کاملApplications of the Unsteady Vortex-Lattice Method in Aircraft Aeroelasticity and Flight Dynamics
The Unsteady Vortex-Lattice Method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally-expensive potential-flow models, such as the Doublet-Lattice Method and strip theory, have long b...
متن کاملA Model for Runway Landing Flow and Capacity with Risk and Cost Benefit Factors
As the demand for the civil aviation has been growing for decades and the system becoming increasingly complex, the use of systems engineering and operations research tools have shown to be of further use in managing this system. In this study, we apply such tools in managing landing operations on runways (as the bottleneck and highly valuable resources of air transportation networks) to handle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011