A Pedestrian’s Approach to Pseudodifferential Operators
نویسنده
چکیده
Pseudodifferential operators are an indispensable tool for the study of partial differential equations and are therefore a branch of classical analysis. In this chapter we offer an approach using time-frequency methods. In this approach time-frequency representations that are standard in signal analysis are used to set up the formalism of pseudodifferential operators, and certain classes of function spaces and symbols, the so-called modulation spaces, arise naturally in the investigation. Although the approach is “pedestrian” and based more on engineering intuition than on “hard” analysis, strong results on boundedness and Schatten class properties are within its scope.
منابع مشابه
properties of M−hyoellipticity for pseudo differential operators
In this paper we study properties of symbols such that these belong to class of symbols sitting insideSm ρ,φ that we shall introduce as the following. So for because hypoelliptic pseudodifferential operatorsplays a key role in quantum mechanics we will investigate some properties of M−hypoelliptic pseudodifferential operators for which define base on this class of symbols. Also we consider maxi...
متن کاملIndex and Homology of Pseudodifferential Operators on Manifolds with Boundary
We prove a local index formula for cusp-pseudodifferential operators on a manifold with boundary. This is known to be equivalent to an index formula for manifolds with cylindrical ends, and hence we obtain a new proof of the classical Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with boundary, as well as an extension of Melrose’s b-index theorem. Our approach is based on ...
متن کاملPseudodifferential Operators
The study of pseudodifferential operators emerged in the 1960’s, having its origins in the study of singular integro-differential operators. In fact, Friedrichs and Lax coined the term “pseudodifferential operator” in their 1965 paper entitled “Boundary Value Problems for First Order Operators”. Since that time, pseudodifferential operators have proved useful in many arenas of modern analysis a...
متن کاملA pr 1 99 8 Traces on algebras of parameter dependent pseudodifferential operators and the eta – invariant
We identify Melrose’s suspended algebra of pseudodifferential operators with a subalgebra of the algebra of parametric pseudodifferential operators with parameter space R. For a general algebra of parametric pseudodifferential operators, where the parameter space may now be a cone Γ ⊂ Rp, we construct a unique “symbol valued trace”, which extends the L2–trace on operators of small order. This a...
متن کامل2 00 6 Pseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand ’ s Symbol Class
We investigate pseudodifferential operators on arbitrary locally compact abelian groups. As symbol classes for the Kohn-Nirenberg calculus we introduce a version of Sjöstrand’s class. Pseudodifferential operators with such symbols form a Banach algebra that is closed under inversion. Since “hard analysis” techniques are not available on locally compact abelian groups, a new time-frequency appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005