HSV-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcript and miRNAs.
نویسندگان
چکیده
In cell cultures, HSV-1 replication is initiated by recruitment by virion protein 16 of transcriptional factors and histone-modifying enzymes to immediate early (α) gene promoters. HSV establishes latent infections characterized by suppression of viral gene expression except for latency-associated transcripts (LATs) and miRNAs. The latent virus reactivates in stressed neurons. A fundamental question is how reactivation initiates in the absence of virion protein 16. We report the following findings in the ganglion explant model. (i) Anti-nerve growth factor antibody accelerated the reactivation of latent virus. Viral mRNAs were detected as early as 9 h after explantation. (ii) After explantation the amounts of viral mRNAs increased whereas amounts of miRNAs and LATs decreased. The decrease in miRNAs and LATs required ongoing protein synthesis, raising the possibility that LAT and miRNAs were degraded by a viral gene product. (iii) The expression of viral genes in explanted ganglia was disordered rather than sequentially ordered as in infected cells in culture. These findings suggest that in reactivating ganglia gene expression is totally derepressed and challenge the current models in that establishment of or exit from latency could not be dependent on the suppression or activation of single or small clusters of viral genes. Finally, miRNAs and LATs reached peak levels 9-11 d after corneal inoculation, thus approximating the pattern of virus replication in these ganglia. These findings suggest that the patterns of accumulation of LATs and miRNAs reflect many different stages in the infection of neurons.
منابع مشابه
Characterization of herpes simplex virus 2 primary microRNA Transcript regulation.
UNLABELLED In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initi...
متن کاملPCR detection of thymidine kinase gen of latent herpes simplex Virus type 1 in mice trigeminal ganglia
Herpes simplex virus type 1 establishes a latent infection in the peripheral nervous system following primary infection. During latent infection, virus genome exhibit limited transcription, with the HSV LATs consistently detected in latency infected ganaglia. Following ocular infection viral latency develops in the trigeminal ganglia. In this study PCR has been used for detection of HSV-1 nuc...
متن کاملAnalysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia.
Analysis of cells infected by a wide range of herpesviruses has identified numerous virally encoded microRNAs (miRNAs), and several reports suggest that these viral miRNAs are likely to play key roles in several aspects of the herpesvirus life cycle. Here we report the first analysis of human ganglia for the presence of virally encoded miRNAs. Deep sequencing of human trigeminal ganglia latentl...
متن کاملHerpes simplex latent infection: quantitation of latency-associated transcript-positive neurons and reactivable neurons.
Dorsal root ganglion neurons, which express herpes simplex virus (HSV) latency-associated transcript (LAT) during experimental latent infection, were investigated by in situ hybridization. The number of LAT-positive neurons was determined by examination of ganglion serial sections. In other latently infected mice, the number of ganglion neurons that reactivated HSV antigen after explant culture...
متن کاملExpression and in vitro Characterization of Herpes Simplex Virus 1 (HSV-1) ORF P Protein
Herpes simplex virus 1 (HSV-1) unspliced 8.3 latency associated transcript (LAT), which located in the long repeat sequences, has been shown to contain at least 16 open reading frames (ORF: A-P). One of these ORF, ORF P, maps almost entirely antisense to HSV-1 neurovirulence gene, ICP34.5. Both ORF P and ICP34.5 are located in the long repeat and are antisense overlapping genes. Therefore, in O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 46 شماره
صفحات -
تاریخ انتشار 2011