Protein kinase C-activated calcium channel in the osteoblast-like clonal osteosarcoma cell line UMR-106.

نویسندگان

  • D T Yamaguchi
  • C R Kleeman
  • S Muallem
چکیده

The effects of protein kinase C stimulation on free cytosolic Ca2+ [( Ca2+]i) were studied in Fura 2-loaded UMR-106 cells. Stimulation of the protein kinase C with the tumor-promoting phorbol esters 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13-diacetate or 1-oleoyl-2-acetylglycerol was followed by an increase in [Ca2+]i. The protein kinase C-induced increase in [Ca2+]i has a lag period, the duration of which was dependent on the stimulant and medium Ca2+ concentrations. With 2 microM TPA, the rise in [Ca2+]i peaked within 1.5 min, after which [Ca2+]i returned partially toward base line. The increase in [Ca2+]i was absolutely dependent on the presence of medium Ca2+ and was inhibited by the Ca2+ channel blockers nicardipine and verapamil. Cell stimulation also results in Ca2+ release from intracellular pool(s) which appears to be mediated by a Ca2+-dependent Ca2+ release mechanism. The reduction in [Ca2+]i was due to channel inactivation. Pretreatment of the cells with 1 nM TPA, 2 units/ml parathyroid hormone (PTH), or 15 microM forskolin blocked the effect of 2 microM TPA on [Ca2+]i. TPA and PTH were more potent inhibitors than was forskolin. The properties of this channel are compared to the cAMP-independent PTH-stimulated Ca2+ channel present in these cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. cAMP-dependent and cAMP-independent calcium channels.

Changes in free cytosolic calcium were measured in UMR-106 cells in response to parathyroid hormone (PTH) stimulation. Bovine PTH-(1-34) induced an increase in [Ca2+]i with the contour of the rise in [Ca2+]i occurring in three successive phases: a rapid increase in [Ca2+]i occurring within seconds, rapid decrement in [Ca2+]i to near-resting levels within 1 min, and slow increment in [Ca2+]i. Ph...

متن کامل

Insulin-like growth factor I suppresses parathyroid hormone (PTH)/PTH-related protein receptor expression via a mitogen-activated protein kinase pathway in UMR-106 osteoblast-like cells.

Insulin-like growth factor I (IGF-I) is important in skeletal growth and has been implicated in the maintenance of bone integrity. PTH stimulates bone resorption through the G protein-linked PTH/PTH-related protein (PTHrP) receptor in osteoblasts. Using a heterogeneous nuclear RNA assay and Northern blot analysis, we showed that IGF-I inhibited expression of the gene for PTH/PTHrP receptor in a...

متن کامل

Phenylalkylamine-sensitive calcium channels in osteoblast-like osteosarcoma cells. Characterization by ligand binding and single channel recordings.

(-)-[3H]Desmethoxyverapamil ((-)-DMV) binds saturably to homogenates of the osteoblast-like cell lines UMR 106 and ROS 17/2.8 with KD values of 45 and 61 nM and Bmax values of 6.0 and 5 pmol/mg protein, respectively. Binding is stereoselective with (-)-DMV 8-10 times more potent than (+)-DMV. None of the dihydropyridine or benzothiazepine Ca2+ antagonists examined affect (-)-[3H]DMV binding. Mo...

متن کامل

Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells.

By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel a...

متن کامل

Insulin as a Potent Stimulator of Akt, ERK and Inhibin-βE Signaling in Osteoblast-Like UMR-106 Cells

Insulin is a peptide hormone of the endocrine pancreas and exerts a wide variety of physiological actions in insulin sensitive tissues, such as regulation of glucose homeostasis, cell growth, differentiation, learning and memory. However, the role of insulin in osteoblast cells remains to be fully characterized. In this study, we demonstrated that the insulin (100 nM) has the ability to stimula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 31  شماره 

صفحات  -

تاریخ انتشار 1987