Generalized Cellular Neural Networks (Gcnns) Constructed Using Particle Swarm Optimization for Spatio-Temporal Evolutionary Pattern Identification
نویسندگان
چکیده
Particle swarm optimisation (PSO) is introduced to implement a new constructive learning algorithm for training generalised cellular neural networks (GCNNs) for the identification of spatiotemporal evolutionary (STE) systems. The basic idea of the new PSO-based learning algorithm is to successively approximate the desired signal by progressively pursuing relevant orthogonal projections. This new algorithm will thus be referred to as the orthogonal projection pursuit (OPP) algorithm, which is in mechanism similar to the conventional projection pursuit approach. A novel two-stage hybrid training scheme is proposed for constructing a parsimonious GCNN model. In the first stage, the orthogonal projection pursuit algorithm is applied to adaptively and successively augment the network, where adjustable parameters of the associated units are optimised using a particle swarm optimiser. The resultant network model produced at the first stage may be redundant. In the second stage, a forward orthogonal regression (FOR) algorithm, aided by mutual information estimation, is applied to refine and improve the initially trained network. The effectiveness and performance of the proposed method is validated by applying the new modelling framework to a spatio-temporal evolutionary system identification problem.
منابع مشابه
GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS
This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, ...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملIdentification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm
In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of i...
متن کاملEvolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting
This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of ne...
متن کاملExperimental and finite-element free vibration analysis and artificial neural network based on multi-crack diagnosis of non-uniform cross-section beam
Crack identification is a very important issue in mechanical systems, because it is a damage that if develops may cause catastrophic failure. In the first part of this research, modal analysis of a multi-cracked variable cross-section beam is done using finite element method. Then, the obtained results are validated usingthe results of experimental modal analysis tests. In the next part, a nove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 18 شماره
صفحات -
تاریخ انتشار 2008