3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding.
نویسندگان
چکیده
Creating filled or hollow channels within 3D tissues has become increasingly important in tissue engineering. Channels can serve as vasculature enhancing medium perfusion or as conduits for nerve regeneration. The 3D biofabrication seems to be a promising method to generate these structures within 3D constructs layer-by-layer. In this study, geometry and interface of bioprinted channels were investigated with micro-computed tomography and fluorescent imaging. In filament printing, size and shape of printed channels are influenced by their orientation, which was analyzed by printing horizontally and vertically aligned channels, and by the ink, which was evaluated by comparing channels printed with an alginate-gelatin hydrogel or with an emulsion. The influence of geometry and cell-embedding in the hydrogel on feature size and shape was investigated by printing more complex channels. The generation of hollow channels, induced through leaching of a support phase, was monitored over time. Horizontally aligned channels provided 16× smaller cross-sectional areas than channels in vertical orientation. The smallest feature size of hydrogel filaments was twice as large compared to emulsion filaments. Feature size and shape depended on the geometry but did not alter when living cells were embedded. With that knowledge, channels can be consciously tailored to the particular needs.
منابع مشابه
Bioprinting in Vascularization Strategies
Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials,...
متن کاملBioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cel...
متن کاملEffects of Directional Subdividing on adaptive Grid-Embedding (RESEARCH NOTE)
The effects of using both directions and directional subdividing on adaptive gridembedding on the computational time and the number of grid points required for the same accuracy are considered. Directional subdividing is used from the beginning of the adaptation procedure without any restriction. To avoid the complication of unstructured grid, the semi-structured grid was used. It is used to so...
متن کاملBioink properties before, during and after 3D bioprinting.
Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as a...
متن کامل3D bioprinting for engineering complex tissues.
Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, curren...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 103 8 شماره
صفحات -
تاریخ انتشار 2015