Multivariate mixed normal conditional heteroskedasticity

نویسندگان

  • L. Bauwens
  • C. M. Hafner
  • Jeroen V. K. Rombouts
چکیده

This paper proposes a new multivariate volatility model where the conditional distribution of a vector time series is given by a mixture of multivariate normal distributions. Each of these distributions is allowed to have a time-varying covariance matrix. The process can be globally covariance-stationary even though some components are not covariance-stationary. Some theoretical properties of the model such as the unconditional covariance matrix and autocorrelations of squared returns are derived. The complexity of the model requires a powerful estimation algorithm. A simulation study compares estimation by maximum likelihood with the EM algorithm. Finally, the model is applied to daily U.S. stock returns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Normal Conditional Heteroskedasticity

Both unconditional mixed-normal distributions and GARCH models with fat-tailed conditional distributions have been employed for modeling financial return data. We consider a mixed-normal distribution coupled with a GARCH-type structure which allows for conditional variance in each of the components as well as dynamic feedback between the components. Special cases and relationships with previous...

متن کامل

Asymptotic Distribution of the Markowitz Portfolio

The asymptotic distribution of the Markowitz portfolio, Σ̂μ̂, is derived, for the general case (assuming fourth moments of returns exist), and for the case of multivariate normal returns. The derivation allows for inference which is robust to heteroskedasticity and autocorrelation of moments up to order four. As a side effect, one can estimate the proportion of error in the Markowitz portfolio du...

متن کامل

Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models

Time varying correlations are often estimated with multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation models is proposed. These have the  exibility of univariate GARCH models coupled with parsimonious parametric models for the c...

متن کامل

A data-driven, distribution-free, multivariate approach to the price-setting newsvendor problem

Many aspects of the classical price-setting newsvendor problem have been studied in the literature and most of the results pertain to the case where the price-demand relationship and demand distribution are explicitly provided. However, in practice, one needs to model and estimate these from historical sales data. Furthermore, many other drivers besides price must be included in the demand resp...

متن کامل

Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity

We consider maximum likelihood estimation of a particular noninvertible ARMA model with autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension to so-called all-pass models in that it allows for autocorrelation and for more flexible forms of conditional heteroskedasticity. These features may be attractive especially in economic and financial application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2007