Could drugs inhibiting the mevalonate pathway also target cancer stem cells?

نویسندگان

  • Wirginia Likus
  • Krzysztof Siemianowicz
  • Konrad Bieńk
  • Małgorzata Pakuła
  • Himani Pathak
  • Chhanda Dutta
  • Qiong Wang
  • Shahla Shojaei
  • Yehuda G Assaraf
  • Saeid Ghavami
  • Artur Cieślar-Pobuda
  • Marek J Łos
چکیده

Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly highlight diverse functions of various elements of this mevalonate pathway. We further discuss in detail the role of elements of the mevalonate cascade in stemness, carcinogenesis, cancer progression, metastasis and maintenance of cancer stem cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-28: Role of Mevalonate-Ras Homology (Rho)/Rho-Associated Coiled-Coil-Forming Protein Ki nase-Mediated Signaling Pathway in The Pathogenesis of Endometriosis-Associated Fibrosis

Background: Endometriosis, a disease affecting 3-10% of women of reproductive age, is characterized by the ectopic growth of endometrial glands and stroma surrounded by dense fibrous tissue. Whereas, normal eutopic endometrium shows scarless tissue repair during menstrual cycles, which suggests that the endometriotic tissues have distinct mechanisms of fibrogenesis. During the development of en...

متن کامل

Mevalonate Metabolism in Immuno-Oncology

Immuno-oncology not only refers to the multifaceted relationship between our immune system and a developing cancer but also includes therapeutic approaches that harness the body's immune system to fight cancer. The recognition that metabolic reprogramming governs immunity was a key finding with important implications for immuno-oncology. In this review, we want to explore how activation and dif...

متن کامل

The Effect of Plant-derived Compounds in Targeting Cancer Stem Cells

Background Cancer stem cells (CSCs) are a small subpopulation of cancer cells with self-renewal and differentiation ability. Furthermore, CSCs are resistant to chemoradiotherapy due to their high level of detoxifying enzymes, strong DNA repair abilities, and high drug efflux capacity. Objective Therefore, CSCs are supposed to account for cancer initiation, progression, metastasis, recurrence, ...

متن کامل

Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo

We observed a co-upregulation of the insulin-like growth factor receptor (IGF-1R)/AKT/mammalian target of rapamycin (mTOR) [InAT] axis and the mevalonate-isoprenoid biosynthesis (MIB) pathways in colorectal cancer stem cells (CSCs) in an unbiased approach. Hence, we hypothesized that the InAT axis might regulate the MIB pathway to govern colorectal CSCs growth. Stimulation (IGF-1) or inhibition...

متن کامل

Inhibition of the mevalonate pathway to override chemoresistance and promote the immunogenic demise of cancer cells

The mevalonate pathway is an attractive target for cancer therapy not only to override multidrug resistance but also to promote the immunogenic demise of malignant cells. Recent data indicate that aminobisphosphonates are superior to statins for the pharmacological manipulation of the mevalonate pathway, since they exert therapeutically relevant effects on both cancer cells and the immune system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016