An Improved Segmentation Approach for Planar Surfaces from Unstructured 3d Point Clouds
نویسندگان
چکیده
The extraction of object features from massive unstructured point clouds with different local densities, especially in the presence of random noisy points, is not a trivial task even if that feature is a planar surface. Segmentation is the most important step in the feature extraction process. In practice, most segmentation approaches use geometrical information to segment the 3D point cloud. The features generally include the position of each point (X, Yand Z), locally estimated surface normals and residuals of best fitting surfaces; however, these features could be affected by noisy points and in consequence directly affect the segmentation results. Therefore, massive unstructured and noisy point clouds also lead to bad segmentation (over-segmentation, undersegmentation or no segmentation). While the RANSAC (random sample consensus) algorithm is effective in the presence of noise and outliers, it has two significant disadvantages, namely, its efficiency and the fact that the plane detected by RANSAC may not necessarily belong to the same object surface; that is, spurious surfaces may appear, especially in the case of parallel-gradual planar surfaces such as stairs. The innovative idea proposed in this paper is a modification for the RANSAC algorithm called Seq-NV-RANSAC. This algorithm checks the normal vector (NV) between the existing point clouds and the hypothesised RANSAC plane, which is created by three random points, under an intuitive threshold value. After extracting the first plane, this process is repeated sequentially (Seq) and automatically, until no planar surfaces can be extracted from the remaining points under the existing threshold value. This prevents the extraction of spurious surfaces, brings an improvement in quality to the computed attributes and increases the degree of automation of surface extraction. Thus the best fit is achieved for the real existing surfaces.
منابع مشابه
3d Segmentation of Unstructured Point Clouds for Building Modelling
The determination of building models from unstructured three-dimensional point cloud data is often based on the piecewise intersection of planar faces. In general, the faces are determined automatically by a segmentation approach. To reduce the complexity of the problem and to increase the performance of the implementation, often a resampled (i.e. interpolated) grid representation is used inste...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملAutomatic Segmentation of Building Facades Using Terrestrial Laser Data
There is an increasing interest of the scientific community in the generation of 3D facade models from terrestrial laser scanner (TLS) data. The segmentation of building facades is one of the essential tasks to be carried out in a 3D modelling process. Since in reality, majority of facade components are planar, the detection and segmentation of geometric elements like planes respond to the prev...
متن کامل3d Object Segmentation of Point Clouds Using Profiling Techniques
In the automatic processing of point clouds, higher level information in the form of point segments is required for classification and object detection purposes. Point cloud segmentation allows for the definition of these segments. Various algorithms have been proposed for the segmentation of point clouds. The advancement of Lidar capabilities has resulted in the increase in volumes of data cap...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010