Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models

نویسنده

  • Tong Zhang
چکیده

Consider linear prediction models where the target function is a sparse linear combination of a set of basis functions. We are interested in the problem of identifying those basis functions with non-zero coefficients and reconstructing the target function from noisy observations. Two heuristics that are widely used in practice are forward and backward greedy algorithms. First, we show that neither idea is adequate. Second, we propose a novel combination that is based on the forward greedy algorithm but takes backward steps adaptively whenever beneficial. We prove strong theoretical results showing that this procedure is effective in learning sparse representations. Experimental results support our theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Greedy Algorithms for the Sparse Learning Problem

This paper studies the forward greedy strategy in sparse nonparametric regression. For additive models, we propose an algorithm called additive forward regression; for general multivariate models, we propose an algorithm called generalized forward regression. Both algorithms simultaneously conduct estimation and variable selection in nonparametric settings for the high dimensional sparse learni...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Forward-Backward Greedy Algorithms for General Convex Smooth Functions over A Cardinality Constraint

We consider forward-backward greedy algorithms for solving sparse feature selection problems with general convex smooth functions. A state-of-the-art greedy method, the ForwardBackward greedy algorithm (FoBa-obj) requires to solve a large number of optimization problems, thus it is not scalable for large-size problems. The FoBa-gdt algorithm, which uses the gradient information for feature sele...

متن کامل

Compressed sensing signal recovery via forward-backward pursuit

Recovery of sparse signals from compressed measurements constitutes an l0 norm minimization problem, which is unpractical to solve. A number of sparse recovery approaches have appeared in the literature, including l1 minimization techniques, greedy pursuit algorithms, Bayesian methods and nonconvex optimization techniques among others. This manuscript introduces a novel two stage greedy approac...

متن کامل

Forward - Backward greedy algorithms for signal demixing

Signal demixing arises in many applications. Common among these are the separation of sparse and low rank components in image and video processing, sparse and group sparse models in multitask learning and spikes and sinusoids in source separation problems. For specific problems of interest, many methods exist to perform recovery, but an approach that generalizes to arbitrary notions of simplici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008