Krylov Subspace Methods for Topology Optimization on Adaptive
نویسنده
چکیده
Topology optimization is a powerful tool for global and multiscale design of structures, microstructures, and materials. The computational bottleneck of topology optimization is the solution of a large number of extremely ill-conditioned linear systems arising in the finite element analysis. Adaptive mesh refinement (AMR) is one efficient way to reduce the computational cost. We propose a new AMR scheme for topology optimization that results in more robust and efficient solutions. For large sparse symmetric linear systems arising in topology optimization, Krylov subspace methods are required. The convergence rate of a Krylov subspace method for a symmetric linear system depends on the spectrum of the system matrix. We address the ill-conditioning in the linear systems in three ways, namely rescaling, recycling, and preconditioning. First, we show that a proper rescaling of the linear systems reduces the huge condition numbers that typically occur in topology optimization to roughly those arising for a problem with homogeneous density. Second, the changes in the linear system from one optimization step to the next are relatively small. Therefore, recycling a subspace of the Krylov subspace and using it to solve the next system can improve the convergence rate significantly. We propose a minimum residual method with recycling (RMINRES) that preserves the short-term recurrence and reduces the cost of recycle space selection by exploiting the symmetry. Numerical results show that this method significantly reduces the total number of iterations over all linear systems and the overall computational cost (compared with the MINRES method which
منابع مشابه
A New Approach for Solving Singular Systems in Topology Optimization Using Krylov Subspace Methods
In topology optimization, the design parameter of the element that does not give any contribution to the objective function vanishes. This causes the stiffness matrix to become singular. To avoid the breakdown caused by this singularity, the previous studies employ some additional procedures. These additional procedures, however, have some problems. On the other hand, convergences of Krylov sub...
متن کاملPreconditioned Krylov Subspace Methods in Nonlinear Optimization
One of the possible ways of solving general problems of constrained nonlinear optimization is to convert them into a sequence of unconstrained problems. Then the need arises to solve an unconstrained optimization problem reliably and efficiently. For this aim, Newton methods are usually applied, often in combination with sparse Cholesky decomposition. In practice, however, this approach may not...
متن کاملLarge-scale topology optimization using preconditioned Krylov subspace methods with recycling
The computational bottleneck of topology optimization is the solution of a large number of linear systems arising in the finite element analysis. We propose fast iterative solvers for large threedimensional topology optimization problems to address this problem. Since the linear systems in the sequence of optimization steps change slowly from one step to the next, we can significantly reduce th...
متن کاملReduced-Rank Adaptive Filtering Using Krylov Subspace
A unified view of several recently introduced reduced-rank adaptive filters is presented. As all considered methods use Krylov subspace for rank reduction, the approach taken in this work is inspired from Krylov subspace methods for iterative solutions of linear systems. The alternative interpretation so obtained is used to study the properties of each considered technique and to relate one red...
متن کاملRobust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques
In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the ‘true’ mean square error (MSE) in the Krylov subspace, even when the esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007