Energy Charge as an Indicator of Pexophagy in Pichia pastoris
نویسندگان
چکیده
Pichia pastoris is a good model for pexophagy research owing to its diverse pexophagy modes (macropexophagy and micropexophagy) exhibited during carbon-source shift from methanol to other carbon sources. The critical condition that triggers activation of macropexophagy and micropexophagy is important for clarifying the P. pastoris pexophagy mechanism and human peroxisomal disorders. In this study, the pexophagy modes of P. pastoris were confirmed by green fluorescent protein expression and alcohol oxidase and formate dehydrogenase activities. Furthermore, intracellular energy charge (EC) was found to be a determinant of pexophagy activation. During methanol induction, the EC was about 0.5. And the final EC value was related to the pexophagy mode when carbon source switched from methanol to others. Macropexophagy and micropexophagy occurred when the EC increased to 0.6-0.75 and above 0.75, respectively. Thus, different EC values were considered as the important factor to trigger different pexophagy modes in P. pastoris. The results obtained in this study could help in achieving better control of the pexophagy modes to study the pexophagy mechanism.
منابع مشابه
P-65: Effective Parameters on the Bovine Follicle Stimulating Hormone Expression in The Pichia Pastoris System
Background: Bovine follicle-stimulating hormone (bFSH) is a heterodimer hormone that consists of a common -subunit which noncovalently associated with the hormone-specific -subunit. During the past 15 years, the methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production because it is able to use methanol as a sole carbon and energy source. Th...
متن کاملAtg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris.
In methylotrophic yeasts, peroxisomes are required for methanol utilization, but are dispensable for growth on most other carbon sources. Upon adaptation of cells grown on methanol to glucose or ethanol, redundant peroxisomes are selectively and quickly shipped to, and degraded in, vacuoles via a process termed pexophagy. We identified a novel gene named ATG28 (autophagy-related genes) involved...
متن کاملComparison of biochemical properties of recombinant phytase expression in the favorable methylotrophic platforms of Pichia pastoris and Hansenula polymorpha
Phytic acid is the dominant form of phosphorous in plant seeds. However, phytic acid cannot beutilized by animals and causes them serious phosphate deficiency. Utilization of phytase as ananimal feed additive can affect liberation of phosphor and its mineral availability. In this study,heterologous expression of the A. niger phyA gene was investigated in the methylotrophic yeastsP. pastoris and...
متن کاملCatabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy.
In this work, the identification and characterization of two hexose transporter homologs in the methylotrophic yeast Pichia pastoris, P. pastoris Hxt1 (PpHxt1) and PpHxt2, are described. When expressed in a Saccharomyces cerevisiae hxt-null mutant strain that is unable to take up monosaccharides, either protein restored growth on glucose or fructose. Both PpHXT genes are transcriptionally regul...
متن کاملThe requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers.
Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017