Two bestrophins cloned from Xenopus laevis oocytes express Ca(2+)-activated Cl(-) currents.
نویسندگان
چکیده
Ca2+-activated Cl- channels play important diverse roles from fast block to polyspermy to olfactory transduction, but their molecular identity has not been firmly established. By searching sequence databases with the M2 pore domain of ligand-gated anion channels, we identified potential Ca2+-activated Cl- channels, which included members of the bestrophin family. We cloned two bestrophins from Xenopus oocytes, which express high levels of Ca2+-activated Cl- channels. The Xenopus bestrophins were expressed in a variety of tissues. We predict that bestrophin has six transmembrane domains with the conserved RFP domain playing an integral part in ionic selectivity. When Xenopus bestrophins were heterologously expressed in human embryonic kidney-293 cells, large Ca2+-activated Cl- currents were observed. The currents are voltage- and time-independent, do not rectify, have a Kd for Ca2+ of approximately 210 nm, and exhibit a permeability ratio of I- > Br- > Cl- >> aspartate. The W93C and G299E mutations produce non-functional channels that exert a dominant negative effect on wild type channels. We conclude that bestrophins are the first molecularly identified Cl- channels that are dependent on intracellular Ca2+ in a physiological range.
منابع مشابه
Activation of different Cl currents in Xenopus oocytes by Ca liberated from stores and by capacitative Ca influx
Xenopus oocytes are an excellent model system for studying Ca signaling. The purpose of this study was to characterize in detail the Ca-activated Cl currents evoked by injection of inositol 1,4,5-trisphosphate (IP3) into Xenopus oocytes voltage-clamped with two microelectrodes. Injection of IP3 into Xenopus oocytes activates two different Ca-activated Cl currents. ICl-1 is stimulated rapidly (w...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملDynamics of calcium regulation of chloride currents in Xenopus oocytes.
Ca-activated Cl currents are widely expressed in many cell types and play diverse and important physiological roles. The Xenopus oocyte is a good model system for studying the regulation of these currents. We previously showed that inositol 1,4,5-trisphosphate (IP3) injection into Xenopus oocytes rapidly elicits a noninactivating outward Cl current ( I Cl1-S) followed several minutes later by t...
متن کاملAsymmetrical distribution of Ca-activated Cl channels in Xenopus oocytes.
Xenopus oocytes are a popular model system for studying Ca signaling. They endogenously express two kinds of Ca-activated Cl currents, I(Cl-1), and I(Cl-2). I(Cl-1) is activated by Ca released from internal stores and, with appropriate voltage protocols, by Ca influx. In contrast, I(Cl-2) activation is dependent on Ca influx. We are interested in understanding how these two different Cl channel...
متن کاملThe transporter-like protein inebriated mediates hyperosmotic stimuli through intracellular signaling.
We cloned the inebriated homologue MasIne from Manduca sexta and expressed it in Xenopus laevis oocytes. MasIne is homologous to neurotransmitter transporters but no transport was observed with a number of putative substrates. Oocytes expressing MasIne respond to hyperosmotic stimulation by releasing intracellular Ca(2+), as revealed by activation of the endogenous Ca(2+)-activated Cl(-) curren...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 49 شماره
صفحات -
تاریخ انتشار 2003