Approaches to Semantic Similarity Measurement for Geo-Spatial Data: A Survey
نویسنده
چکیده
Semantic similarity is central for the functioning of semantically enabled processing of geospatial data. It is used to measure the degree of potential semantic interoperability between data or different geographic information systems (GIS). Similarity is essential for dealing with vague data queries, vague concepts or natural language and is the basis for semantic information retrieval and integration. The choice of similarity measurement influences strongly the conceptual design and the functionality of a GIS. The goal of this article is to provide a survey presentation on theories of semantic similarity measurement and review how these approaches – originally developed as psychological models to explain human similarity judgment – can be used in geographic information science. According to their knowledge representation and notion of similarity we classify existing similarity measures in geometric, feature, network, alignment and transformational models. The article reviews each of these models and outlines its notion of similarity and metric properties. Afterwards, we evaluate the semantic similarity models with respect to the requirements for semantic similarity measurement between geospatial data. The article concludes by comparing the similarity measures and giving general advice how to choose an appropriate semantic similarity measure. Advantages and disadvantages point to their suitability for different tasks.
منابع مشابه
Defining a Threshold Value for Maximum Spatial Information Loss of Masked Geo-Data
Geographical masks are a group of location protection methods for the dissemination and publication of confidential and sensitive information, such as healthand crime-related geo-referenced data. The use of such masks ensures that privacy is protected for the individuals involved in the datasets. Nevertheless, the protection process introduces spatial error to the masked dataset. This study qua...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملA Systematic Survey of Point Set Distance Measures for Link Discovery
Large amounts of geo-spatial information have been made available with the growth of the Web of Data. While discovering links between resources on the Web of Data has been shown to be a demanding task, discovering links between geo-spatial resources proves to be even more challenging. This is partly due to the resources being described by the means of vector geometry. Especially, discrepancies ...
متن کاملThe semantic similarity ensemble
Computational measures of semantic similarity between geographic terms provide valuable support across geographic information retrieval, data mining, and information integration. To date, a wide variety of approaches to geo-semantic similarity have been devised. A judgement of similarity is not intrinsically right or wrong, but obtains a certain degree of cognitive plausibility, depending on ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trans. GIS
دوره 12 شماره
صفحات -
تاریخ انتشار 2008