Handling Continuous Space Security Games with Neural Networks
نویسندگان
چکیده
Despite significant research in Security Games, limited efforts have been made to handle game domains with continuous space. Addressing such limitations, in this paper we propose: (i) a continuous space security game model that considers infinitesize action spaces for players; (ii) OptGradFP, a novel and general algorithm that searches for the optimal defender strategy in a parametrized search space; (iii) OptGradFP-NN, a convolutional neural network based implementation of OptGradFP for continuous space security games; (iv) experiments and analysis with OptGradFP-NN. This is the first time that neural networks have been used for security games, and it shows the promise of applying deep learning to complex security games which previous approaches fail to handle.
منابع مشابه
Policy Learning for Continuous Space Security Games using Neural Networks
A wealth of algorithms centered around (integer) linear programming have been proposed to compute equilibrium strategies in security games with discrete states and actions. However, in practice many domains possess continuous state and action spaces. In this paper, we consider a continuous space security game model with infinite-size action sets for players and present a novel deep learning bas...
متن کاملTowards Addressing Spatio - Temporal Aspects in Security Games by Fei
Game theory has been successfully used to handle complex resource allocation and patrolling problems in security and sustainability domains. More specifically, real-world applications have been deployed for different domains based on the framework of security games, where the defender (e.g., security agency) has a limited number of resources to protect a set of targets from an adversary (e.g., ...
متن کاملTowards Addressing Spatio - Temporal Aspects in Security Games by Fei Fang
Game theory has been successfully used to handle complex resource allocation and patrolling problems in security and sustainability domains. More specifically, real-world applications have been deployed for different domains based on the framework of security games, where the defender (e.g., security agency) has a limited number of resources to protect a set of targets from an adversary (e.g., ...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملThe optimized model of factors effecting on the Merger and Acquisition from multiple dimensions with neural network approach.
Nowadays, firms apply the merger and acquisition strategy for gaining synergy, increasing the wealth of stockholders, economics of scales, enhancing efficiency, increasing the ability to research and develop, developing the firm and decreasing the risk. Developing an optimized model with the ability to identify the effective variables on the merger and acquisition process has a significant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017