Tensor-Based Surface Morphometry
نویسندگان
چکیده
We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature and total gray matter volume change. It is highly likely that such age-related surface deformations are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. By formulating the surface deformation in tensor geometry, surface flattening, which distorts the inherent geometry of the cortex, can be avoided. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterwards, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surfacebased morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents.
منابع مشابه
Multivariate Tensor-Based Brain Anatomical Surface Morphometry via Holomorphic One-Forms
Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to ...
متن کاملMultivariate tensor-based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS
Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of th...
متن کاملTensor-based Brain Surface Modeling and Analysis
We present a unified computational approach to tensorbased morphometry in detecting the brain surface shape difference between two clinical groups based on magnetic resonance images. Our approach is novel in a sense that we combined surface modeling, surface data smoothing and statistical analysis in a coherent unified mathematical framework. The cerebral cortex has the topology of a 2D highly ...
متن کاملTensor-based Brain Surface Modeling and Analysi
We present a unified computational approach to tensorbased morphometry in detecting the brain surface shape difference between two clinical groups based on magnetic resonance images. Our approach is novel in a sense that we combined surface modeling, surface data smoothing and statistical analysis in a coherent unified mathematical framework. The cerebral cortex has the topology of a 2D highly ...
متن کاملHuman Brain Mapping with Conformal Geometry and Multivariate Tensor-Based Morphometry
In this paper, we introduce theories and algorithms in conformal geometry, including Riemann surface, harmonic map, holomorphic 1-form, and Ricci flow, which play important roles in computational anatomy. In order to study the deformation of brain surfaces, we introduce the multivariate tensor-based morphometry (MTBM) method for statistical computing. For application, we introduce our system fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002