Boosting the sensitivity of Nd(3+)-based luminescent nanothermometers.

نویسندگان

  • Sangeetha Balabhadra
  • Mengistie L Debasu
  • Carlos D S Brites
  • Luís A O Nunes
  • Oscar L Malta
  • João Rocha
  • Marco Bettinelli
  • Luís D Carlos
چکیده

Luminescence thermal sensing and deep-tissue imaging using nanomaterials operating within the first biological window (ca. 700-980 nm) are of great interest, prompted by the ever-growing demands in the fields of nanotechnology and nanomedicine. Here, we show that (Gd1-xNdx)2O3 (x = 0.009, 0.024 and 0.049) nanorods exhibit one of the highest thermal sensitivity and temperature uncertainty reported so far (1.75 ± 0.04% K(-1) and 0.14 ± 0.05 K, respectively) for a nanothermometer operating in the first transparent near infrared window at temperatures in the physiological range. This sensitivity value is achieved using a common R928 photomultiplier tube that allows defining the thermometric parameter as the integrated intensity ratio between the (4)F5/2 → (4)I9/2 and (4)F3/2 → (4)I9/2 transitions (with an energy difference between the barycentres of the two transitions >1000 cm(-1)). Moreover, the measured sensitivity is one order of magnitude higher than the values reported so far for Nd(3+)-based nanothermometers enlarging, therefore, the potential of using Nd(3+) ions in luminescence thermal sensing and deep-tissue imaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids.

There is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiome...

متن کامل

Ru(II) sensitized lanthanide luminescence: synthesis, photophysical properties, and near-infrared luminescent determination of alpha-fetal protein (AFP).

A series of dinuclear compounds of [Ru(bpy)(2)(tpphz)Ln(TTA)(3)](PF(6))(2) (tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:3''',4'''-j]phenazine; Ln = Er(III), Nd(III), Yb(III) and Gd(III); TTA = 2-thenoyltrifluoroacetone) have been prepared by attachment of a [Ln(TTA)(3)] fragment at the vacant diimine site of the luminescent mononuclear complex [Ru(bpy)(2)(tpphz)](PF(6))(2). In the solid state, ...

متن کامل

Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells.

We fabricated fluorescent nanoparticles which monitor temperature changes without sensitivity to pH (4-10) and ionic strength (0-500 mM). The nanothermometers spontaneously enter living HeLa cells via endocytosis, enclosed in acidic organelles, i.e., endosome/lysosome, and then transported along microtubules in a temperature-dependent manner, working as "walking nanothermometers".

متن کامل

Ultra-small Nd(3+)-doped nanoparticles as near-infrared luminescent biolabels of hemin in bacteria.

Near-infrared (NIR) luminescent Nd(3+)-doped nanoparticles (NPs) have attracted considerable attention in bioimaging and biodetection. Here, we demonstrate sub-6 nm NaGdF4:Nd(3+),Fe(3+) NPs as luminescent biolabels of hemin molecules that act as the exogenous electron carriers in microbial communities. Contrary to the severe quenching of the visible luminescence for either upconverting or downc...

متن کامل

A practical strategy to create near-infrared luminescent probes: conversion from fluorescein-based sensors.

Luminescent lanthanide complexes incorporating Yb(3+) and Nd(3+) are attracting much attention as imaging agents, but there have been few practical methods to make responsive sensors with these complexes. Here, we introduce a general strategy to synthesize near-infrared luminescent probes by conjugating a Yb(3+) chelate to established fluorescein-based probes. As the first demonstration, we pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 7 41  شماره 

صفحات  -

تاریخ انتشار 2015