Relevance-based language modelling for recommender systems

نویسندگان

  • Javier Parapar
  • Alejandro Bellogín
  • Pablo Castells
  • Alvaro Barreiro
چکیده

Relevance-Based Language Models, commonly known as Relevance Models, are successful approaches to explicitly introduce the concept of relevance in the statistical Language Modelling framework of Information Retrieval. These models achieve state-of-the-art retrieval performance in the pseudo relevance feedback task. On the other hand, the field of Recommender Systems is a fertile research area where users are provided with personalised recommendations in several applications. In this paper, we propose an adaptation of the Relevance Modelling framework to effectively suggest recommendations to a user. We also propose a probabilistic clustering technique to perform the neighbour selection process as a way to achieve a better approximation of the set of relevant items in the pseudo relevance feedback process. These techniques, although well known in the Information Retrieval field, have not been applied yet to recommender systems, and, as the empirical evaluation results show, both proposals outperform individually several baseline methods. Furthermore, by combining both approaches even larger effectiveness improvements are achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

A Study of Smoothing Methods for Relevance-Based Language Modelling of Recommender Systems

Language Models have been traditionally used in several fields like speech recognition or document retrieval. It was only recently when their use was extended to collaborative Recommender Systems. In this field, a Language Model is estimated for each user based on the probabilities of the items. A central issue in the estimation of such Language Model is smoothing, i.e., how to adjust the maxim...

متن کامل

Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles

When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Providing a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)

Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2013