Runge-Kutta Schemes for Numerical Discretization of Bilevel Optimal Control Problems
نویسنده
چکیده
In this paper we consider the discretization of bilevel optimal control problems by s-stage RungeKutta schemes. Bilevel optimal control problem belong to the class of dynamic or differential games as they are the time-dependent counterpart of finite bilevel optimization problems. The analysis of the Runge–Kutta schemes presented in this paper is based on the continuous optimality system which is derived by replacing the lower-and upper-level control problems, respectively, by their associated necessary optimality conditions . We apply the results of [13, 4, 15] for standard and IMEX Runge-Kutta schemes for general optimal control problems in order to relate the discretization schemes obtained through finite dimensional optimality theory to time-discretizations of the continuous optimality system. Moreover, order conditions up to order three are proven. Finally, we briefly discuss suitable extensions to general leader-follower games.
منابع مشابه
Implicit-Explicit Runge-Kutta Schemes for Numerical Discretization of Optimal Control Problems
Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and non-stiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge–Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable trans...
متن کاملAsymptotic Preserving Time–Discretization of Optimal Control Problems for the Goldstein–Taylor Model
We consider the development of implicit-explicit time integration schemes for optimal control problems governed by the Goldstein–Taylor model. In the diffusive scaling this model is a hyperbolic approximation to the heat equation. We investigate the relation of time integration schemes and the formal Chapman-Enskog type limiting procedure. For the class of stiffly accurate implicit–explicit Run...
متن کاملExplicit Runge-Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems
We analyze explicit Runge–Kutta schemes in time combined with stabilized finite elements in space to approximate evolution problems with a first-order linear differential operator in space of Friedrichs-type. For the time discretization, we consider explicit secondand third-order Runge–Kutta schemes. We identify a general set of properties on the spatial stabilization, encompassing continuous a...
متن کاملComputation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control
We derive order conditions for the discretization of (unconstrained) optimal control problems, when the scheme for the state equation is of Runge-Kutta type. This problem appears to be essentially the one of checking order conditions for symplectic partitioned Runge-Kutta schemes. We show that the computations using bi-coloured trees are naturally expressed in this case in terms of oriented fre...
متن کاملTotal variation diminishing Runge-Kutta schemes
In this paper we further explore a class of high order TVD (total variation diminishing) Runge-Kutta time discretization initialized in a paper by Shu and Osher, suitable for solving hyperbolic conservation laws with stable spatial discretizations. We illustrate with numerical examples that non-TVD but linearly stable Runge-Kutta time discretization can generate oscillations even for TVD (total...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015