Developments of the generative topographic mapping

نویسندگان

  • Christopher M. Bishop
  • Markus Svensén
  • Christopher K. I. Williams
چکیده

The Generative Topographic Mapping (GTM) model was introduced by 7) as a probabilistic re-formulation of the self-organizing map (SOM). It offers a number of advantages compared with the standard SOM, and has already been used in a variety of applications. In this paper we report on several extensions of the GTM, including an incremental version of the EM algorithm for estimating the model parameters, the use of local subspace models, extensions to mixed discrete and continuous data, semi-linear models which permit the use of high-dimensional manifolds whilst avoiding computational intractability, Bayesian inference applied to hyper-parameters, and an alternative framework for the GTM based on Gaussian processes. All of these developments directly exploit the probabilistic structure of the GTM, thereby allowing the underlying modelling assumptions to be made explicit. They also highlight the advantages of adopting a consistent probabilistic framework for the formulation of pattern recognition algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing data imputation through Generative Topographic Mapping as a mixture of t - distributions : Theoretical developments

The Generative Topographic Mapping (GTM) was originally conceived as a probabilistic alternative to the well-known, neural network-inspired, Self-Organizing Map (SOM). The GTM can also be interpreted as a constrained mixture of distributions model. In recent years, much attention has been directed towards Student t-distributions as an alternative to Gaussians in mixture models due to their robu...

متن کامل

Locally Linear Generative Topographic Mapping

We propose a method for non-linear data projection that combines Generative Topographic Mapping and Coordinated PCA. We extend the Generative Topographic Mapping by using more complex nodes in the network: each node provides a linear map between the data space and the latent space. The location of a node in the data space is given by a smooth nonlinear function of its location in the latent spa...

متن کامل

Compositional Generative Mapping for Tree-Structured Data - Part II: Topographic Projection Model

We introduce GTM-SD (Generative Topographic Mapping for Structured Data), which is the first compositional generative model for topographic mapping of tree-structured data. GTM-SD exploits a scalable bottom-up hidden-tree Markov model that was introduced in Part I of this paper to achieve a recursive topographic mapping of hierarchical information. The proposed model allows efficient exploitati...

متن کامل

Kernel generative topographic mapping

A kernel version of Generative Topographic Mapping, a model of the manifold learning family, is defined in this paper. Its ability to adequately model non-i.i.d. data is illustrated in a problem concerning the identification of protein subfamilies from protein sequences.

متن کامل

Voice Morphing Using the Generative Topographic Mapping

In this paper we address the problem of Voice Morphing. We attempt to transform the spectral characteristics of a source speaker’s speech signal so that the listener would believe that the speech was uttered by a target speaker. The voice morphing system transforms the spectral envelope as represented by a Linear Prediction model. The transformation is achieved by codebook mapping using the Gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1998