Strigolactone- and Karrikin-Independent SMXL Proteins Are Central Regulators of Phloem Formation

نویسندگان

  • Eva-Sophie Wallner
  • Vadir López-Salmerón
  • Ilya Belevich
  • Gernot Poschet
  • Ilona Jung
  • Karin Grünwald
  • Iris Sevilem
  • Eija Jokitalo
  • Rüdiger Hell
  • Yrjö Helariutta
  • Javier Agustí
  • Ivan Lebovka
  • Thomas Greb
چکیده

Plant stem cell niches, the meristems, require long-distance transport of energy metabolites and signaling molecules along the phloem tissue. However, currently it is unclear how specification of phloem cells is controlled. Here we show that the genes SUPPRESSOR OF MAX2 1-LIKE3 (SMXL3), SMXL4, and SMXL5 act as cell-autonomous key regulators of phloem formation in Arabidopsis thaliana. The three genes form an uncharacterized subclade of the SMXL gene family that mediates hormonal strigolactone and karrikin signaling. Strigolactones are endogenous signaling molecules regulating shoot and root branching [1] whereas exogenous karrikin molecules induce germination after wildfires [2]. Both activities depend on the F-box protein and SCF (Skp, Cullin, F-box) complex component MORE AXILLARY GROWTH2 (MAX2) [3-5]. Strigolactone and karrikin perception leads to MAX2-dependent degradation of distinct SMXL protein family members, which is key for mediating hormonal effects [6-12]. However, the nature of events immediately downstream of SMXL protein degradation and whether all SMXL proteins mediate strigolactone or karrikin signaling is unknown. In this study we demonstrate that, within the SMXL gene family, specifically SMXL3/4/5 deficiency results in strong defects in phloem formation, altered sugar accumulation, and seedling lethality. By comparing protein stabilities, we show that SMXL3/4/5 proteins function differently to canonical strigolactone and karrikin signaling mediators, although being functionally interchangeable with those under low strigolactone/karrikin signaling conditions. Our observations reveal a fundamental mechanism of phloem formation and indicate that diversity of SMXL protein functions is essential for a steady fuelling of plant meristems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis.

The plant hormones strigolactones and smoke-derived karrikins are butenolide signals that control distinct aspects of plant development. Perception of both molecules in Arabidopsis thaliana requires the F-box protein MORE AXILLARY GROWTH2 (MAX2). Recent studies suggest that the homologous SUPPRESSOR OF MAX2 1 (SMAX1) in Arabidopsis and DWARF53 (D53) in rice (Oryza sativa) are downstream targets...

متن کامل

Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may Perceive an Unknown Signal that is not Karrikin or Strigolactone

The α/β-hydrolases KAI2 and D14 are paralogous receptors for karrikins and strigolactones, two classes of plant growth regulators with butenolide moieties. KAI2 and D14 act in parallel signaling pathways that share a requirement for the F-box protein MAX2, but produce distinct growth responses by regulating different members of the SMAX1-LIKE/D53 family. kai2 and max2 mutants share seed germina...

متن کامل

F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana.

Smoke is an important abiotic cue for plant regeneration in postfire landscapes. Karrikins are a class of compounds discovered in smoke that promote seed germination and influence early development of many plants by an unknown mechanism. A genetic screen for karrikin-insensitive mutants in Arabidopsis thaliana revealed that karrikin signaling requires the F-box protein MAX2, which also mediates...

متن کامل

Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica

The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protei...

متن کامل

Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.

Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017