Influence of Prior Thermomechanical Treatment on the Training Behaviour of a NiTi Alloy

نویسندگان

  • D. Favier
  • Yehan Liu
  • P. Manach
چکیده

It is known that two-way memory effect (TWME) can be obtained in shape memory alloys by various types of thermomechanical cycling (training). Although much uncertainty still exists on the physical origin of the TWME, it is well recognised that dislocation arrays developed during training can have an important influence on the TWME. The investigation presented in this paper was designed to provide more information on the influence of initial dislocation structure on the TWME training behaviour of a near equiatomic NiTi alloy. Differences in initial dislocation structure were created by cycling specimens through austenite t+ martensite uansformations in different modes: thermal cycling between 200 K and 370 K, symmemc mechanical cycling to + 5% shear strain, and combined thermal-mechanical cycling. Subsequent TWME training was performed in tension at a temperature just above Ms by deforming to 5% strain followed by heating. It is found that, whereas the deformation behaviour during training was different for specimens of different prior treatments, the final TWME after training was always the same.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC

Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at...

متن کامل

Experiments on deformation behaviour of functionally graded NiTi structures

Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled "Functionally graded shape memo...

متن کامل

Effect of the Primary Microstructures during Training Producers on TWSME in NiTi Alloys (TECHNICAL NOTE)

The influence of the martensitic, martensitic+austenitic and austenitic structures in bending training on two-way shape memory effect (TWSME) in Ni-50.8 at %Ti and Ni-49.9 at %Ti alloys was studied. In addition of the primary structure, the effect of pre-strain, plastic strain, training cycle and training temperature on the TWSME was investigated. The prepared samples were trained in martensiti...

متن کامل

Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.

The objective of this work is to understand the structure-property relationships in polycrystalline NiTiPt (Ti 42.7 at.% Ni 7.5 at %Pt) with a composition showing pseudoelasticity at ambient temperatures. Structural characterization of the alloy includes grain size determination and texture analysis while the thermomechanical properties are explored using tensile testing. Variation in heat trea...

متن کامل

Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments.

INTRODUCTION The performance and mechanical properties of nickel-titanium (NiTi) instruments are influenced by factors such as cross-section, flute design, raw material, and manufacturing processes. Many improvements have been proposed by manufacturers during the past decade to provide clinicians with safer and more efficient instruments. METHODS The mechanical performance of NiTi alloys is s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016