Synapse-specific regulation of AMPA receptor function by PSD-95.

نویسندگان

  • Jean-Claude Béïque
  • Da-Ting Lin
  • Myoung-Goo Kang
  • Hiro Aizawa
  • Kogo Takamiya
  • Richard L Huganir
چکیده

PSD-95 is a major protein found in virtually all mature excitatory glutamatergic synapses in the brain. Here, we have addressed the role of PSD-95 in controlling glutamatergic synapse function by generating and characterizing a PSD-95 KO mouse. We found that the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)subtype of glutamate receptor (AMPAR)-mediated synaptic transmission was reduced in these mice. Two-photon (2P) uncaging of MNI-glutamate onto individual spines suggested that the decrease in AMPAR function in the PSD-95 KO mouse stems from an increase in the proportion of "silent" synapses i.e., synapses containing N-methyl-d-aspartate (NMDA) receptors (NMDARs) but no AMPARs. Unexpectedly, the silent synapses in the KO mouse were located onto morphologically mature spines. We also observed that a significant population of synapses appeared unaffected by PSD-95 gene deletion, suggesting that the functional role of PSD-95 displays synapse-specificity. In addition, we report that the decay of NMDAR-mediated current was slower in KO mice: The contribution of NR2B subunit containing receptors to the NMDAR-mediated synaptic current was greater in KO mice. The greater occurrence of silent synapses might be related to the greater magnitude of potentiation after long-term potentiation induction observed in these mice. Together, these results suggest a synapse-specific role for PSD-95 in controlling synaptic function that is independent of spine morphology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic Strength Regulated by Palmitate Cycling on PSD-95

Dynamic regulation of AMPA-type glutamate receptors represents a primary mechanism for controlling synaptic strength, though mechanisms for this process are poorly understood. The palmitoylated postsynaptic density protein, PSD-95, regulates synaptic plasticity and associates with the AMPA receptor trafficking protein, stargazin. Here, we identify palmitate cycling on PSD-95 at the synapse and ...

متن کامل

Synapse-Specific and Developmentally Regulated Targeting of AMPA Receptors by a Family of MAGUK Scaffolding Proteins

Trafficking of AMPA receptors (AMPA-Rs) to and from synapses controls the strength of excitatory synaptic transmission. However, proteins that cluster AMPA-Rs at synapses remain poorly understood. Here we show that PSD-95-like membrane-associated guanylate kinases (PSD-MAGUKs) mediate this synaptic targeting, and we uncover a remarkable functional redundancy within this protein family. By manip...

متن کامل

Ubiquitination Regulates PSD-95 Degradation and AMPA Receptor Surface Expression

PSD-95 is a major scaffolding protein of the postsynaptic density, tethering NMDA- and AMPA-type glutamate receptors to signaling proteins and the neuronal cytoskeleton. Here we show that PSD-95 is regulated by the ubiquitin-proteasome pathway. PSD-95 interacts with and is ubiquitinated by the E3 ligase Mdm2. In response to NMDA receptor activation, PSD-95 is ubiquitinated and rapidly removed f...

متن کامل

Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons.

Cyclin-dependent kinase 5 (Cdk5) and its activator p35 have been implicated in drug addiction, neurodegenerative diseases such as Alzheimer's, learning and memory, and synapse maturation and plasticity. However, the molecular mechanisms by which Cdk5 regulates synaptic plasticity are still unclear. PSD-95 is a major postsynaptic scaffolding protein of glutamatergic synapses that regulates synap...

متن کامل

Phosphorylation of the postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 binding site of stargazin regulates binding to PSD-95 and synaptic targeting of AMPA receptors.

Dynamic regulation of AMPA-type receptors at the synapse is proposed to play a critical role in alterations of the synaptic strength seen in cellular models of learning and memory such as long-term potentiation in the hippocampus. Stargazin, previously identified as an AMPA receptor (AMPAR)-interacting protein, is critical for surface expression and synaptic targeting of AMPARs. Stargazin inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 51  شماره 

صفحات  -

تاریخ انتشار 2006