A Polynomial Identity for the Bilinear Operation in Lie-yamaguti Algebras

نویسنده

  • MURRAY R. BREMNER
چکیده

We use computer algebra to demonstrate the existence of a multilinear polynomial identity of degree 8 satisfied by the bilinear operation in every Lie-Yamaguti algebra. This identity is a consequence of the defining identities for Lie-Yamaguti algebras, but is not a consequence of anticommutativity. We give an explicit form of this identity as an alternating sum over all permutations of the variables in a polynomial with 8 terms. Our computations also show that such identities do not exist in degrees less than 8.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discrete variational identity on semi-direct sums of Lie algebras

The discrete variational identity under general bilinear forms on semi-direct sums of Lie algebras is established. The constant γ involved in the variational identity is determined through the corresponding solution to the stationary discrete zero curvature equation. An application of the resulting variational identity to a class of semi-direct sums of Lie algebras in the Volterra lattice case ...

متن کامل

Fiber bundles and Lie algebras of top spaces

In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.

متن کامل

2 Generalized Reductive Lie

We investigate a class of Lie algebras which we call generalized reductive Lie algebras. These are generalizations of semi-simple, reductive, and affine Kac-Moody Lie algebras. A generalized reductive Lie algebra which has an irreducible root system is said to be irreducible and we note that this class of algebras have been under intensive investigation in recent years. They have also been call...

متن کامل

Omni-Lie Algebras

Without the factor of 1 2 , this would be the semidirect product Lie algebra for the usual action of gl(n,R) on R. With the factor of 1 2 , the bracket does not satisfy the Jacobi identity. Nevertheless, it does satisfy the Jacobi identity on many subspaces which are closed under the bracket. In fact, we will see that any Lie algebra structure on R is realized on such a subspace. If B is any bi...

متن کامل

The Simple Non-lie Malcev Algebra as a Lie-yamaguti Algebra

The simple 7-dimensional Malcev algebra M is isomorphic to the irreducible sl(2,C)-module V (6) with binary product [x, y] = α(x ∧ y) defined by the sl(2,C)-module morphism α : Λ2V (6)→ V (6). Combining this with the ternary product (x, y, z) = β(x∧y) ·z defined by the sl(2,C)-module morphism β : Λ2V (6)→ V (2) ≈ sl(2,C) gives M the structure of a generalized Lie triple system, or Lie-Yamaguti ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013